Without actually calculating the cubes, find the value of 27³+(-14)³+(-13)³
Answers
Answered by
6
Answer:
Step-by-step explanation:
a³+b³+c³ = (a + b + c) (a² + b² + c² – ab – bc – ca) + 3abc.
a = 28, b = -15 and c = -13
→ = (28)³+(-15)³+(-13)³
→ = (28+(-15)+(-13)) ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 3(28)(-15)(-13)
→ = (28-15-13) ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 3(28)(195)
→ = (28-28)((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28))+(84)(195)
→ = 0 ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 16380
→ = 0 + 16380
→ = 16380
Hope it helps
Answered by
11
Similar questions