Without actually calculating the cubes, find the value of (28) ³+(-15) ³+(-13) ³
Answers
Answered by
311
a³+b³+c³ = (a + b + c) (a² + b² + c² – ab – bc – ca) + 3abc.
a = 28, b = -15 and c = -13
→ = (28)³+(-15)³+(-13)³
→ = (28+(-15)+(-13)) ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 3(28)(-15)(-13)
→ = (28-15-13) ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 3(28)(195)
→ = (28-28)((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28))+(84)(195)
→ = 0 ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 16380
→ = 0 + 16380
→ = 16380
Hope it helps
a = 28, b = -15 and c = -13
→ = (28)³+(-15)³+(-13)³
→ = (28+(-15)+(-13)) ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 3(28)(-15)(-13)
→ = (28-15-13) ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 3(28)(195)
→ = (28-28)((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28))+(84)(195)
→ = 0 ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 16380
→ = 0 + 16380
→ = 16380
Hope it helps
Answered by
165
Question:
Without actually calculating the cubes, find the value of 28³ + (-15)³ + (13)³.
Answer:
Let a = 28, b = -15 and c = -13, then
a + b + c = 28 - 15 - 13 = 0
__________________
We know that if a + b + c = 0,
then a³ + b³+ c³ = 3abc
__________________
Putting back the values of a, b and c in a³ + b³ + c³ = 3abc
28³ + (-15)³ + (-13)³ = 3(28)(-15)(-13)
= 84195
= 16380.
Similar questions