without actually calculating the cubes find the value of minus 3 upon 4 whole cube plus minus 5 upon 8 whole cube + 11 upon 8 whole cube
Answers
Answered by
34
Answer: 495/256
Step-by-step explanation:
Please see the attached explanation
Attachments:
Answered by
12
a=-3/4
b=-5/8
c=11/8
To find a^3+b^3+c^3
now a+b+c=0
a^3+b^3+c^3-3abc
=( a+b+c)(a^+b^2+c^2-ab-bc-ca)
=0
a^3+b^3+c^3=3abc
=3(-3/4)(-5/8)(11/8)
=495/256
b=-5/8
c=11/8
To find a^3+b^3+c^3
now a+b+c=0
a^3+b^3+c^3-3abc
=( a+b+c)(a^+b^2+c^2-ab-bc-ca)
=0
a^3+b^3+c^3=3abc
=3(-3/4)(-5/8)(11/8)
=495/256
Similar questions