Math, asked by jaskaran135, 1 year ago

without actually cubing , find cubes of 48³ - 30³ - 18³


mehakarora5147pa99ul: use formula x power 3+ypower3+zpower3= 3xyz

Answers

Answered by Anonymous
2
Answer :


 {48}^{3}  -  {30}^{3}  -  {18}^{3}  \\   \\here \:   we \: need \: to \: find \: cubes \: without \: actual \: calculations \\  \\ now \: as \: we \: know \: that \\  \\  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc \\ if \: a + b + c = 0 \\  \\ let \: us \: assume \: that \\ here \: a =  {48}^{3}  \\ b =  - 30 {}^{3}   \\  c =  { - 18}^{3}  \\  \\ therefore \\  \\ 4 {8}^{3}  + ( - 30 {)}^{3}  + ( - 18 {)}^{3}  = 3(48) ( - 30)( - 18) \\ if \: 48 + ( - 30) + ( - 18) = 0 \\  \\ 48 - 30 - 18 = 0 \\  \\ 0 = 0 \\  \\ now \: 48 + ( - 30) + ( - 18) = 0 \\  \\ therefore \\  \\ (4 {8)}^{3}  + ( - 3 {0)}^{3}  + ( - 18 {)}^{3}  = 3(48)( - 30)( - 18)


3  \times 48  ( - 30)( - 18) \\  \\ 3  \times 48 \times30 \times 18 \\  \\  90 \times 48 \times 18 \\  \\ 4320 \times 18 \\  \\ 77760

therefore \\  \\ 48 {}^{3}  - 30 {}^{3}  - 1 {8}^{3}  = 77760



HOPE IT WOULD HELP YOU

jaskaran135: brainliast
Similar questions