#
Without actually finding the cubes find the value of (-23)^3 +(13)^3 +(10)^3
Answers
Step-by-step explanation:
a³+b³+c³ = (a + b + c) (a² + b² + c² – ab – bc – ca) + 3abc.
a = 28, b = -15 and c = -13
→ = (28)³+(-15)³+(-13)³
→ = (28+(-15)+(-13)) ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 3(28)(-15)(-13)
→ = (28-15-13) ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 3(28)(195)
→ = (28-28)((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28))+(84)(195)
→ = 0 ((28)²+(-15)²+(-13)²-(28)(-15)-(-15)(-13)-(-13)(28)) + 16380
→ = 0 + 16380
→ = 16380
Hope it helps
it was hard so please mark it as brainliest
have a great day
Solution:
Given to find:
= (-23)³ + (13)³ + (10)³
We know that if a, b, c are three numbers such that a + b + c = 0, then,
→ a³ + b³ + c³ = 3abc
Here,
→ (-23) + (13) + (10) = 0
So,
(-23)³ + (13)³ + (10)³
= 3 × (-23) × 13 × 10
= -8970 (Answer)
Concept Used:
If a, b and c are 3 numbers such that a + b + c = 0, then,
→ a³ + b³ + c³ = 3abc
Proof:
Given,
→ a + b + c = 0
→ a + b = -c
Cubing both sides, we get,
→ (a + b)³ = -c³
→ a³ + b³ + 3ab(a + b) = -c³
Also, a + b = -c,
→ a³ + b³ + 3ab × (-c) = -c³
→ a³ + b³ - 3abc = -c³
→ a³ + b³ + c³ = 3abc
∆ Using this formula, problem is solved.