Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:i)13/3125ii)17/8iii)64/455iv)15/1600v)29/343vi)\frac{23}{2^{3}\times 5^{2}}vii)\frac{129}{2^{2}\times 5^{7}\times 7^{5}}viii)6/15ix)35/50x)77/210
Answers
Answered by
0
Solution:
A number is terminating decimal only if the denominator has the prime factors as
![{2}^{n} {5}^{m} \: \: n \: and \: m \: \epsilon Z^+ \\ \\ {2}^{n} {5}^{m} \: \: n \: and \: m \: \epsilon Z^+ \\ \\](https://tex.z-dn.net/?f=+%7B2%7D%5E%7Bn%7D+%7B5%7D%5E%7Bm%7D+%5C%3A+%5C%3A+n+%5C%3A+and+%5C%3A+m+%5C%3A+%5Cepsilon+Z%5E%2B+%5C%5C+%5C%5C+)
![i) \frac{13}{3125} \\ \\ = > \frac{13}{ {5}^{5} } \\ \\ i) \frac{13}{3125} \\ \\ = > \frac{13}{ {5}^{5} } \\ \\](https://tex.z-dn.net/?f=i%29+%5Cfrac%7B13%7D%7B3125%7D+%5C%5C+%5C%5C+%3D+%26gt%3B+%5Cfrac%7B13%7D%7B+%7B5%7D%5E%7B5%7D+%7D+%5C%5C+%5C%5C)
terminating decimal expansion.
![ii) \frac{17}{8} = \frac{17}{ {2}^{3} } \\ \\ terminating \: decimal \: expansion \\\\ ii) \frac{17}{8} = \frac{17}{ {2}^{3} } \\ \\ terminating \: decimal \: expansion \\\\](https://tex.z-dn.net/?f=ii%29+%5Cfrac%7B17%7D%7B8%7D+%3D+%5Cfrac%7B17%7D%7B+%7B2%7D%5E%7B3%7D+%7D+%5C%5C+%5C%5C+terminating+%5C%3A+decimal+%5C%3A+expansion+%5C%5C%5C%5C+)
![iii) \frac{64}{455} \\ \\ = > \frac{ {2}^{6} }{5 \times 13 \times 7} \\ \\ non \: terminating \: repeating \: \\ decimal \: expansion iii) \frac{64}{455} \\ \\ = > \frac{ {2}^{6} }{5 \times 13 \times 7} \\ \\ non \: terminating \: repeating \: \\ decimal \: expansion](https://tex.z-dn.net/?f=iii%29+%5Cfrac%7B64%7D%7B455%7D+%5C%5C+%5C%5C+%3D+%26gt%3B+%5Cfrac%7B+%7B2%7D%5E%7B6%7D+%7D%7B5+%5Ctimes+13+%5Ctimes+7%7D+%5C%5C+%5C%5C+non+%5C%3A+terminating+%5C%3A+repeating+%5C%3A+%5C%5C+decimal+%5C%3A+expansion)
![iv) \frac{15}{1600} \\ \\ = > \frac{3 \times 5}{ {2}^{4} \times 100} \\ \\ = > \frac{3 \times5 }{ {2}^{4} \times {(5 \times 2)}^{2} } \\ \\ = > \frac{3 }{ {2}^{6} \times {5} } \\ \\ terminating \: decimal \: expansion \\ \\ iv) \frac{15}{1600} \\ \\ = > \frac{3 \times 5}{ {2}^{4} \times 100} \\ \\ = > \frac{3 \times5 }{ {2}^{4} \times {(5 \times 2)}^{2} } \\ \\ = > \frac{3 }{ {2}^{6} \times {5} } \\ \\ terminating \: decimal \: expansion \\ \\](https://tex.z-dn.net/?f=iv%29+%5Cfrac%7B15%7D%7B1600%7D+%5C%5C+%5C%5C+%3D+%26gt%3B+%5Cfrac%7B3+%5Ctimes+5%7D%7B+%7B2%7D%5E%7B4%7D+%5Ctimes+100%7D+%5C%5C+%5C%5C+%3D+%26gt%3B+%5Cfrac%7B3+%5Ctimes5+%7D%7B+%7B2%7D%5E%7B4%7D+%5Ctimes+%7B%285+%5Ctimes+2%29%7D%5E%7B2%7D+%7D+%5C%5C+%5C%5C+%3D+%26gt%3B+%5Cfrac%7B3+%7D%7B+%7B2%7D%5E%7B6%7D+%5Ctimes+%7B5%7D+%7D+%5C%5C+%5C%5C+terminating+%5C%3A+decimal+%5C%3A+expansion+%5C%5C+%5C%5C+)
![v) \frac{29}{343} = \frac{29}{ {7}^{3} } \\ \\ non \: terminating \: repeating \: \\ decimal \: expansion \\ v) \frac{29}{343} = \frac{29}{ {7}^{3} } \\ \\ non \: terminating \: repeating \: \\ decimal \: expansion \\](https://tex.z-dn.net/?f=v%29+%5Cfrac%7B29%7D%7B343%7D+%3D+%5Cfrac%7B29%7D%7B+%7B7%7D%5E%7B3%7D+%7D+%5C%5C+%5C%5C+non+%5C%3A+terminating+%5C%3A+repeating+%5C%3A+%5C%5C+decimal+%5C%3A+expansion+%5C%5C+)
![vi) \frac{23}{ {2}^{3} \times {5}^{2} } \\ \\ \: terminating \: decimal \: expansion \\ \\ vi) \frac{23}{ {2}^{3} \times {5}^{2} } \\ \\ \: terminating \: decimal \: expansion \\ \\](https://tex.z-dn.net/?f=vi%29+%5Cfrac%7B23%7D%7B+%7B2%7D%5E%7B3%7D+%5Ctimes+%7B5%7D%5E%7B2%7D+%7D+%5C%5C+%5C%5C+%5C%3A+terminating+%5C%3A+decimal+%5C%3A+expansion+%5C%5C+%5C%5C+)
![vii) \frac{129}{ {2}^{2} \times {5}^{7} \times {7}^{5} } \\ \\ non \: terminating \: repeating \: \\ decimal \: expansion \\ \\ vii) \frac{129}{ {2}^{2} \times {5}^{7} \times {7}^{5} } \\ \\ non \: terminating \: repeating \: \\ decimal \: expansion \\ \\](https://tex.z-dn.net/?f=vii%29+%5Cfrac%7B129%7D%7B+%7B2%7D%5E%7B2%7D+%5Ctimes+%7B5%7D%5E%7B7%7D+%5Ctimes+%7B7%7D%5E%7B5%7D+%7D+%5C%5C+%5C%5C+non+%5C%3A+terminating+%5C%3A+repeating+%5C%3A+%5C%5C+decimal+%5C%3A+expansion+%5C%5C+%5C%5C+)
![viii) \frac{6}{15} = \frac{3 \times 2}{3 \times 5} \\ \\ = \frac{2}{5} \\ \\\: terminating \: decimal \: expansion viii) \frac{6}{15} = \frac{3 \times 2}{3 \times 5} \\ \\ = \frac{2}{5} \\ \\\: terminating \: decimal \: expansion](https://tex.z-dn.net/?f=viii%29+%5Cfrac%7B6%7D%7B15%7D+%3D+%5Cfrac%7B3+%5Ctimes+2%7D%7B3+%5Ctimes+5%7D+%5C%5C+%5C%5C+%3D+%5Cfrac%7B2%7D%7B5%7D+%5C%5C+%5C%5C%5C%3A+terminating+%5C%3A+decimal+%5C%3A+expansion)
![ix) \frac{35}{50} = \frac{5 \times 7}{2 \times {5}^{2} } \\ \\ = \frac{7}{2 \times 5} \\ \\ \: terminating \: decimal \: expansion \\ \\ ix) \frac{35}{50} = \frac{5 \times 7}{2 \times {5}^{2} } \\ \\ = \frac{7}{2 \times 5} \\ \\ \: terminating \: decimal \: expansion \\ \\](https://tex.z-dn.net/?f=ix%29+%5Cfrac%7B35%7D%7B50%7D+%3D+%5Cfrac%7B5+%5Ctimes+7%7D%7B2+%5Ctimes+%7B5%7D%5E%7B2%7D+%7D+%5C%5C+%5C%5C+%3D+%5Cfrac%7B7%7D%7B2+%5Ctimes+5%7D+%5C%5C+%5C%5C+%5C%3A+terminating+%5C%3A+decimal+%5C%3A+expansion+%5C%5C+%5C%5C+)
![x) \: \frac{77}{210} = \frac{11 \times 7}{2 \times 3 \times 5 \times 7} \\ \\ = \frac{11}{2 \times 3 \times 5} \\ \\ non \: terminating \: repeating \: \\ decimal \: expansion \\ x) \: \frac{77}{210} = \frac{11 \times 7}{2 \times 3 \times 5 \times 7} \\ \\ = \frac{11}{2 \times 3 \times 5} \\ \\ non \: terminating \: repeating \: \\ decimal \: expansion \\](https://tex.z-dn.net/?f=x%29+%5C%3A+%5Cfrac%7B77%7D%7B210%7D+%3D+%5Cfrac%7B11+%5Ctimes+7%7D%7B2+%5Ctimes+3+%5Ctimes+5+%5Ctimes+7%7D+%5C%5C+%5C%5C+%3D+%5Cfrac%7B11%7D%7B2+%5Ctimes+3+%5Ctimes+5%7D+%5C%5C+%5C%5C+non+%5C%3A+terminating+%5C%3A+repeating+%5C%3A+%5C%5C+decimal+%5C%3A+expansion+%5C%5C+)
Hope it helps you.
A number is terminating decimal only if the denominator has the prime factors as
terminating decimal expansion.
Hope it helps you.
Similar questions