Math, asked by bakopatel, 11 months ago

Without calculator
sqrt(500*501*502*503+1)=?


sivaprasath: did you mean sqrt(500*501*502*503) + 1 ?
bakopatel: Whole sqrt
sivaprasath: sqrt(500*501*502*504) ?
sivaprasath: or sqrt([500*501*502*503]+1)?
sivaprasath: well, it's (501^2) = 251001 , if the Q is, sqrt([500*501*502*503]+1)
bakopatel: or sqrt([500*501*502*503]+1)?
bakopatel: sqrt([500*501*502*503]+1)?
sivaprasath: you may not understand my steps, because they weren't explained,.lol
bakopatel: The answer is 251501

Answers

Answered by sivaprasath
7

Answer:

251501

Step-by-step explanation:

Given :

To find the value of \sqrt{(500*501*502*503)+1}

Without using calculator, (without direct multiplication)

Solution :

Note:

a² - b² = ( a + b ) ( a - b )   ...(i)

(a + b)² = a² + 2ab + b²     ...(ii)

(a - b)² = a² - 2ab + b²       ...(iii)

_

\sqrt{(500*501*502*503)+1}

\sqrt{(500*502*501*503)+1}

\sqrt{((501 -1)*(501+1)*(502-1)*(502+1))+1}

\sqrt{((501^2 -1)*(502^2-1))+1}   by (i)

\sqrt{((501^2*502^2 - 501^2 - 502^2 + 1)+1}

\sqrt{(501^2*(501+1)^2 - 501^2 - (501+1)^2 + 2}

\sqrt{(501^2*[(501)^2 + 2*501 + 1)] - 501^2 - [(501)^2 + 2*501 +1] + 2}

\sqrt{(501^2*[(501)^2 + 2*501 + 1 - 1] - [(501)^2 + 2*501 +1] + 2}

\sqrt{(501^2*[(501)^2 + 2*501] - (501)^2 - 2*501 - 1 + 2}

\sqrt{(501^4 + 2*501^3 - (501)^2 - 2*501 + 1}

\sqrt{(501^4 + 2*501^3 - 2*501 - (501^2 - 1) }

\sqrt{(501^4 + 2*501(501^2 - 1) - (501^2 - 1) }

\sqrt{(501^4 + (2*501 - 1)(501^2 - 1)}

\sqrt{(501^4 + (2*(500+1) - 1)(501^2 - 1)}

\sqrt{(501^4 + (2*(500) +2*1 - 1)(501^2 - 1)}

\sqrt{(501^4 + (2*(500)+2 - 1)(501^2 - 1)}

\sqrt{(501^4 + (2*(500+1)(501^2 - 1)}

\sqrt{(501^4 + (2*(500+1)(501^2 - 1)}

\sqrt{(501^4 + (2*(500)(501^2 - 1) + (501^2 -1)}

\sqrt{(501^4 + (2*(500)(501^2) -2(500) + (501^2 -1)}

\sqrt{(501^4 + (2*(500)(501^2) + (501^2 -2(500) -1)}

\sqrt{(501^4 + (2*(500)(501^2) + (501^2 -2(500 +1 -1) -1 )}

\sqrt{(501^4* + (2*(500)(501^2) + (501^2 -2(500 +1 )- 2*(-1) -1 )}

\sqrt{(501^4* + (2*(500)(501^2) + (501^2 -2(501) + 2 -1 )}

\sqrt{(501^4* + (2*(500)(501^2) + (501^2 -2(501) + 1 )}

\sqrt{(501^4* + (2*(500)(501^2) + (501 - 1)^2} by (iii)

\sqrt{(501^4* + (2*(500)(501^2) + (500)^2}

\sqrt{(501^2 + 500)^2} by (ii)

(501^2 + 500) = ((500)^2 + 2*500 + 1 + 500) = 250000 + 1000 + 500 + 1 = 251501


sivaprasath: it's just 4 step answer, but for explanation, it took too-long,. instead you can use calculator
bakopatel: Good
sivaprasath: I forgot to type '=' in every step,.
sivaprasath: and forgot to erase that bracket of 2 from 17th line
bakopatel: Hmmm
Answered by SecretArtist
5

Answer:

Here is the Solution :-

Step-by-step explanation:

Given in the image beside,

Easy & Crisp way.

Attachments:
Similar questions