Math, asked by Tejbhan160, 7 months ago

without expandind the determinant show that [1,bc,b+c],[1,ca,c+a],[1,ab,a+b]|=|[1,a,a^2],[1,b,b^2],[1,c,c^2]|`

Answers

Answered by Nishantkadu14
0

Answer:

xgu mknlm mm

Step-by-step explanation:

cgh jd still add dil full to cm we fi do go see dyvkcfvm

Answered by amitsnh
0

Answer:

|. 1. bc. b+c. |

|. 1. ca. c+a. |

|. 1 ab. a+b.|

multiplying the first row by a, second by b and third by c

1/abc*. |. a. abc. ab+ac. |

|. b. abc. bc+ab. |

|. c. abc. ac+ab. |

taking abc out from column 2

|. a. 1. ab+ac. |

|. b. 1. bc+ab. |

|. c. 1. ac+ab. |

|. a. 1. ab+bc+ac - bc. |

|. b. 1. ab+bc+ac - ac. |

|. c. 1. ab+bc+ac - ab. |

|. a. 1. ab+bc+ac |. |. a. 1. bc. |

|. b. 1 ab+bc+ac | - |. b. 1. ac |

|. c. 1. ab+bc+ac.|. |. c. 1. ab.|

after taking (ab+bc+ac) out from third column of first determinant, second and third columns will become same and the value of first determinant will be zero. thus, second determinant will remain. now multiplying first row of left determinant by a, second by b and third by c, we have

|. a^2. a abc. |

-1/(abc) |. b^2. b. abc. |

|. c^2. c. abc. |

taking abc out from third column and cancelling we have,

|. a^2. a. 1. |

-1 |. b^2. b. 1. |

|. c^2. c. 1. |

switching first and third column ( this will create a negative sign effect which will cancel the already existing negative sign . thus

|. 1. a. a^2. |

|. 1. b. b^2. |

|. 1. c. c^2. |

proved

Similar questions