Math, asked by PragyaTbia, 1 year ago

Without expanding the determinant, prove that \left|\begin{array}{ccc}ax&by&cz\\x^{2}&y^{2}&z^{2}\\1&1&1\end{array}\right| = \left|\begin{array}{ccc}a&b&c\\x&y&z\\yz&zx&xy\end{array}\right|

Answers

Answered by rohitkumargupta
1
HELLO DEAR,



GIVEN:- \bold{\left|\begin{array}{ccc}ax&by&cz\\x^{2}&y^{2}&z^{2}\\1&1&1\end{array}\right|}

=> \bold{\left|\begin{array}{ccc}ax&by&cz\\x^{2}&y^{2}&z^{2}\\1&1&1\end{array}\right|}


taking x , y & z common from C1 , C2 , C3 respectively,
we get,

=> \bold{xyz\left|\begin{array}{ccc}a&b&c\\x&y&z\\(1/x)&(1/y)&(1/z)\end{array}\right|}

multiply xyz with R3

=> \left|\begin{array}{ccc}a&b&c\\x&y&z\\yz&zx&xy\end{array}\right|



hence, \bold{\left|\begin{array}{ccc}ax&by&cz\\x^{2}&y^{2}&z^{2}\\1&1&1\end{array}\right|} = \bold{\left|\begin{array}{ccc}a&b&c\\x&y&z\\yz&zx&xy\end{array}\right|}



I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions