Math, asked by yogeshkumarsharma995, 2 months ago

Without factorization, find the nature of the roots of the quadratic equation. .
4x2- 12x + 9 = 0.​

Answers

Answered by sriabivarshinibagn
0

Step-by-step explanation:

Here a=4,b=-12 and c=-9

D=

b

2

−4ac

D=

(−12)

2

−4(4)(−9)

D=144+144=288

Answered by BrainlyMilitary
5

⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀☆GIVEN QUADRATIC EQUATION : 4x² - 12x + 9 = 0 ,

⠀⠀⠀⠀⠀Now , We know that for finding nature of roots we find Discriminant ( D ) and it's given by :

\qquad \dag\:\:\bigg\lgroup \sf{ D \: = \: b^2 \:-\:4ac }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , D is the Discriminant ,

⠀⠀⠀⠀&

⠀⠀⠀⠀⠀▪︎ ⠀If D = 0 then The roots are equal , real & rational .

⠀⠀⠀⠀⠀▪︎ ⠀If D > 0 then The roots are real , distinct & rational .

⠀⠀⠀⠀⠀▪︎ ⠀If D < 0 then The roots are imaginary & unequal.

⠀⠀⠀⠀⠀In the given Quadratic equation : 4x² - 12x + 9 = 0 { a = 4 , b = -12 & c = 9 }

\qquad \dashrightarrow \sf D \: = \: b^2 \:-\:4ac \:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\

\qquad \dashrightarrow \sf D \: = \: b^2 \:-\:4ac \:\\\\

\qquad \dashrightarrow \sf D \: = \: (-12)^2 \:-\:4(4)(9) \:\\\\

\qquad \dashrightarrow \sf D \: = \: (-12)^2 \:-\:16(9) \:\\\\

\qquad \dashrightarrow \sf D \: = \: (12)^2 \:-\:144 \:\\\\

\qquad \dashrightarrow \sf D \: = \: 144\:-\:144 \:\\\\

\qquad \dashrightarrow \sf D \: = \: 0 \:\\\\

⠀⠀⠀⠀⠀Therefore,

\qquad \dashrightarrow \sf D \: = \: 0 \:\\\\

\qquad \dashrightarrow \sf 0 \: = \: 0 \:\\\\

\qquad \dashrightarrow \sf D \: = \: 0 \:\\\\

\qquad \dashrightarrow \pmb{\underline{\purple{\: D \: \ = \: 0\: }} }\:\:\bigstar \\\\

⠀⠀⠀⠀⠀⠀Hence , The roots are equal , real & rational  .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions