without finding cubes factorise (x-2y)^3-(2y-3y)^3+(3y-x)^3
Mohanchandrabhatt:
Friend please mark my answer as the BRILLIANSIT ANSWER.
Answers
Answered by
2
Given ( x - 2y)3 + (2y - 3z)3 + ( 3z - x)3
Let a = ( x - 2y), b =(2y - 3z), c= ( 3z - x)
a + b + c = ( x - 2y)+(2y - 3z)+( 3z - x) = 0
Recall that if (a + b + c) = 0 then a3 + b3 + c3 = 3abc
Thus, ( x - 2y)3 + (2y - 3z)3 + ( 3z - x)3 = 3( x - 2y)(2y - 3z)( 3z - x)
Let a = ( x - 2y), b =(2y - 3z), c= ( 3z - x)
a + b + c = ( x - 2y)+(2y - 3z)+( 3z - x) = 0
Recall that if (a + b + c) = 0 then a3 + b3 + c3 = 3abc
Thus, ( x - 2y)3 + (2y - 3z)3 + ( 3z - x)3 = 3( x - 2y)(2y - 3z)( 3z - x)
Answered by
1
= ( x - 2y )³ + ( 2y - 3y )³ + ( 3y - x )³
=
= a + b + c
= ( x - 2y )+ ( 2y - 3y ) + ( 3y - x )
= x - 2y + 2y - 3y + 3y - x
= 0
= so ( x - 2y )³ + ( 2y - 3y )³ + ( 3y - x )³
= 3 ( x - 2y ) ( 2y - 3y ) ( 3y - x )
=
= a + b + c
= ( x - 2y )+ ( 2y - 3y ) + ( 3y - x )
= x - 2y + 2y - 3y + 3y - x
= 0
= so ( x - 2y )³ + ( 2y - 3y )³ + ( 3y - x )³
= 3 ( x - 2y ) ( 2y - 3y ) ( 3y - x )
Similar questions