Without finding cubes, factorise : (x − y) 3 + (y − z) 3 + (z − x) 3
Answers
Answered by
2
Answer:
a^3 + b^2 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)
If,
a + b + c = 0
Then,
a^3 + b^3 + c^3 = 3abc
Here,
a = x - 2y
b = 2y - 3z
c = 3z - x
Thus,
(x - 2y) + (2y - 3z) + (3z - x) = 0
And then,
(x - 2y)^3 + (2y - 3z)^3 + (3z - x)^3 = 3 (x - 2y) (2y - 3z) (3z - x)
Similar questions
Computer Science,
9 months ago
Chemistry,
9 months ago
Hindi,
1 year ago
Math,
1 year ago
Science,
1 year ago