Math, asked by alok1980, 1 month ago

Without finding the cubes, factories (x-2y)³+(2y-z)³+(z-x)³​

Answers

Answered by VED2468
1

Answer:

this is the answer for your question

Attachments:
Answered by Anonymous
68

GivEn:

  • (x - 2y)³ + (2y - z)³ + (z - x)³

To find:

  • Factors of (x - 2y)³ + (2y - z)³ + (z - x)³.

Solution:

☯ (x - 2y)³ + (2y - z)³ + (z - x)³

★ According to the Question:

We know that,

  • a³ + b³ + c³ =(a + b + c)(a² + b² + c² - ab - bc - ca) + 3abc

Here,

  • a = (x - 2y)
  • b = (2y - z)
  • c = (z - x)

⠀━━━━━━━━━━━━━━━━━━━━━━━

➯ a + b + c = (x - 2y) + (2y - z) + (z - x) = 0

➯ 3(x - 2y)(2y - z)(z - x)

∴ Hence, Factorisation of (x - 2y)³ + (2y - z)³ + (z - x)³ is 3(x - 2y)(2y - z)(z - x).

⠀━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀Identities related to it :

  • (a + b)²=a²+ 2ab + b² = (-a-b)²
  • (a - b)2a² - 2ab + b²
  • (a-b) (a + b) = a²-b²
  • (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
  • (a+b-c)² - a² + b²+ c² + 2ab-2bc-2ca
  • (a-b+c)² - a² + b² + c² - 2ab - 2bc +2ca
  • (a+b+c)²=a² + b²+ c² - 2ab + 2bc-2ca
  • (a-b-c)2- a² + b² + c² - 2ab + 2bc - 2ca
  • (a+b)³ a³ + b³ + 3ab (a + b)
  • (a-b)3a³-b³-3ab (a - b)
  • a³ + b³ = (a + b)³-3ab(a + b)= (a + b) (a²- ab + b²)
  • a³-b³(a - b)³ + 3ab(a - b)(a - b) (a² + ab + b²)
  • a³ + b³ + c³-3abc = (a+b+c) (a²+ b² + c²-ab-bc-ca)
Similar questions