Without finding the cubes, factories (x-2y)³+(2y-z)³+(z-x)³
Answers
Answered by
1
Answer:
this is the answer for your question
Attachments:
Answered by
68
GivEn:
- (x - 2y)³ + (2y - z)³ + (z - x)³
To find:
- Factors of (x - 2y)³ + (2y - z)³ + (z - x)³.
Solution:
☯ (x - 2y)³ + (2y - z)³ + (z - x)³
★ According to the Question:
We know that,
- a³ + b³ + c³ =(a + b + c)(a² + b² + c² - ab - bc - ca) + 3abc
Here,
- a = (x - 2y)
- b = (2y - z)
- c = (z - x)
⠀━━━━━━━━━━━━━━━━━━━━━━━
➯ a + b + c = (x - 2y) + (2y - z) + (z - x) = 0
➯ 3(x - 2y)(2y - z)(z - x)
∴ Hence, Factorisation of (x - 2y)³ + (2y - z)³ + (z - x)³ is 3(x - 2y)(2y - z)(z - x).
⠀
⠀━━━━━━━━━━━━━━━━━━━━━━━
⠀⠀⠀⠀★ Identities related to it :
- (a + b)²=a²+ 2ab + b² = (-a-b)²
- (a - b)2a² - 2ab + b²
- (a-b) (a + b) = a²-b²
- (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
- (a+b-c)² - a² + b²+ c² + 2ab-2bc-2ca
- (a-b+c)² - a² + b² + c² - 2ab - 2bc +2ca
- (a+b+c)²=a² + b²+ c² - 2ab + 2bc-2ca
- (a-b-c)2- a² + b² + c² - 2ab + 2bc - 2ca
- (a+b)³ a³ + b³ + 3ab (a + b)
- (a-b)3a³-b³-3ab (a - b)
- a³ + b³ = (a + b)³-3ab(a + b)= (a + b) (a²- ab + b²)
- a³-b³(a - b)³ + 3ab(a - b)(a - b) (a² + ab + b²)
- a³ + b³ + c³-3abc = (a+b+c) (a²+ b² + c²-ab-bc-ca)
Similar questions