Without finding the cubes, factorise (x – 2y )3+ ( 2y – 3z )3 + ( 3z – x )3
Answers
Hey dear!!
Question::- Find the factories of
(x - 2y)^3 + (2y -3z )^3 + (3z - x)^3
Here's your answer
==================>>>
*We know that,
______________________
a^3 + b^3 + c^3 - 3abc = (a + b +c)(a^2 + b^2 + c^2 - ab - bc - ca)
If,
(a + b + c) = 0
Then,
a^3 + b^3 + c^3 = 3abc
______________________
*And here,
If,
a = (x - 2y)
b = (2y - 3z)
c = (3z - x)
Thus,
(x - 2y) + (2y - 3z) + (3z - x) = 0 [ a + b + c = 0 ]
And last,
(x - 2y)^3 + (2y -3z )^3 + (3z - x)^3 = 3 (x - 2y) (2y - 3z) (3z - x)
_________________
Hope it helps!! ☺️
Answer:
plzz mark as brainliest
Step-by-step explanation:
Hey there!
______________
We know,
a^3 + b^2 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)
If,
a + b + c = 0
Then,
a^3 + b^3 + c^3 = 3abc
Here,
a = x - 2y
b = 2y - 3z
c = 3z - x
Thus,
(x - 2y) + (2y - 3z) + (3z - x) = 0
And then,
(x - 2y)^3 + (2y - 3z)^3 + (3z - x)^3 = 3 (x - 2y) (2y - 3z) (3z - x)
______________
Hope it helps...!!!