without finding the cubes, factorise (x − y)^3 + (y − z)^3 + (z − x)^3
Answers
Answered by
3
when a+b+c = 0 we know that a^3+b^3+c^3 = 3 ABC
(x-y)^3 + (y-z)^3 + (z-x)^3
= 3 (x-y)(y-2)(z-x)
= 3 (xy-xz-y^2+yz)(z-x)
= 3 (xyz-x^2y-xz^2+x^2 z-y^2 z+xy^2+yz^2 -xy^2)
= 3 [x^2(z-y) +z^2(y-x) +y^2(x-z) ]
similarly x-2y+2y-3z+3z-x = 0
hence, (x-2y)^3+(2y-3z)^3+(3z-x)^3
= 3(x-2y)(2y-3z)(3z-x)
Similar questions
Geography,
5 months ago
Math,
5 months ago
Social Sciences,
10 months ago
Math,
10 months ago
Science,
1 year ago