without finding the cubes simplify:- (x-y)³ +(y-z)³ +(z-x)³/ (x-y)² + (y-z)² + (z-x)²
Answers
Answered by
3
Answer:
(x-Y) +(y-z) +(z-x)
Step-by-step explanation:
We have,
(x-y)^3 + (y-z) ^3 +(z-x) ^3 - - - - - - 1
(x-y)^2 + (y-z) ^2 +(z-x) ^2 - - - - - - 2
Equation 1 can be written as,
((x-y) + (y-z) + (z-x)) ^3
Similarly,
Equation 2 can be written as,
((x-y) + (y-z) + (z-x)) ^2
Then,
Dividing eq. 1/ eq. 2
=> ((x-y) + (y-z) + (z-x)) ^3 / ((x-y) + (y-z) + (z-x)) ^2
We get,
(x-y) + (y-z) + (z-x)
Similar questions