Math, asked by daris52, 2 months ago

Without finding the zeroes a and B of
polynomial p (x) = x^2-5x+6,find the value of (i)alpha/beta+beta/alpha (ii) alpha^2+beta^2 (iii) alpha^3+beta^3 (iv) alpha^4+beta^4​

Answers

Answered by hukam0685
5

Step-by-step-Explanation:

Given:p(x) =  {x}^{2} - 5x + 6 \\

To find:

i) \frac{ \alpha }{ \beta } + \frac{ \beta }{ \alpha } \\ \\ ii) { \alpha }^{2} + { \beta }^{2} \\ \\ iii) { \alpha }^{3} + { \beta }^{3} \\ \\ iv) { \alpha }^{4} + { \beta }^{4} \\ \\

Solution:

If \alpha\:\:and\:\:\beta are zeros of quadratic polynomial ax^2+bx+c

then

 \alpha + \beta = \frac{ - b}{a} \\ \\ \alpha \beta = \frac{c}{a} \\

According to the given quadratic polynomial \alpha + \beta = 5...eq1 \\ \\ \alpha \beta = 6...eq2 \\

ii) To find { \alpha }^{2} + { \beta }^{2}Square eq1

( { \alpha + \beta )}^{2} =25 \\ \\ open \: whole \: square \\ \\ { \alpha }^{2} + { \beta }^{2} + 2 \alpha \beta =25 \\ \\ put \: value \: of \: \alpha \beta \: from \: eq2 \\ \\ { \alpha }^{2} + { \beta }^{2} +2(6) = 25 \\ \\{ \alpha }^{2} + { \beta }^{2} = 25 -12\\\\ { \alpha }^{2} + { \beta }^{2} = 13 \\ \\

iii) To find { \alpha }^{3} + { \beta }^{3}Take cube of eq1 {( \alpha + \beta )}^{3} =( 5)^{3} \\ \\ open \: identity \: in \: left \: side \\ \\ { \alpha }^{3} + { \beta }^{3} + 3 \alpha \beta ( \alpha + \beta ) = 125 \\ \\ put \: value \: of \: \alpha + \beta \: and \: \alpha \beta from \: eq1 \: and \: eq2 \\ \\ { \alpha }^{3} + { \beta }^{3} + 3(6)(5) = 125 \\ \\ { \alpha }^{3} + { \beta }^{3}= 125 - 90 \\ \\ { \alpha }^{3} + { \beta }^{3}= 35 \\ \\

i)To find  \frac{\alpha}{ \beta } + \frac{\beta}{ \alpha}

Divide result of (ii) by eq2

 \frac{ { \alpha }^{2} + { \beta }^{2} }{ \alpha \beta } = \frac{13}{6} \\ \\ \frac{ { \alpha }^{ \cancel2} }{ \cancel\alpha \beta } + \frac{ { \beta }^{ \cancel2} }{ \alpha \cancel\beta } = \frac{13}{6} \\ \\ \frac{ \alpha }{ \beta } + \frac{ \beta }{ \alpha } = \frac{13}{6} \\ \\

iv) To find { \alpha }^{4} + { \beta }^{4}

Take fourth power of eq1

{( \alpha  +  \beta )}^{4}  =  {(5)}^{4}  \\  \\ open \: identity \: in \: LHS \\  \\  { \alpha }^{4}  + 4 { \alpha }^{3}  \beta  + 6 { \alpha }^{2} { \beta }^{2}   + 4  \alpha { \beta }^{3}  +  { \beta }^{4}  = 625 \\  \\ { \alpha }^{4} + { \beta }^{4} + 6 { \alpha }^{2}  { \beta }^{2}  + 4 \alpha  \beta ( { \alpha }^{2}  +  { \beta }^{2} ) = 625 \\

put the value of \alpha\beta from eq2 and result of part(ii)

 { \alpha }^{4} + { \beta }^{4} + 6 ({ \alpha \beta })^{2}  + 4 \alpha  \beta ( { \alpha }^{2}  +  { \beta }^{2} ) = 625 \\ \\ { \alpha }^{4} + { \beta }^{4} + 6 (6)^{2}  + 4 (6) (13 ) = 625 \\ \\ { \alpha }^{4} + { \beta }^{4} + 216  + 312 = 625 \\ \\ { \alpha }^{4} + { \beta }^{4} + 528 = 625 \\ \\ { \alpha }^{4} + { \beta }^{4} = 625 - 528 \\  \\ { \alpha }^{4} + { \beta }^{4}  = 97 \\

Final answer:

i) \bold{\green{\frac{ \alpha }{ \beta } + \frac{ \beta }{ \alpha } = \frac{13}{6}}}\\

ii) \bold{\red{{ \alpha }^{2} + { \beta }^{2} = 13} } \\

iii) \bold{\purple{{ \alpha }^{3} + { \beta }^{3}= 35 }}\\

iv) \bold{\pink{{ \alpha }^{4} + { \beta }^{4}  = 97 }} \\

Hope it helps you.

To learn more on brainly:

1) find the the value of x if 3^2x+1=243 https://brainly.in/question/38428028

2)Solve the following pair of linear equations graphically. Also write the observations.(i) x + y = 1 ; 2x - 3y = 7 https://brainly.in/question/41675964

Similar questions