Math, asked by rutujarajendrabagal, 1 year ago

without using calculator find the value of cos (105)​

Answers

Answered by shrutikamble3032
11

Answer:

cos(105)=

 \frac{1 -  \sqrt{3} }{2 \sqrt{2} }

Step-by-step explanation:

cos(105) = cos(45 + 60) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = cos45 \times cos60  \:   - sin45 \times sin60 \: \\  \:  \:  \:  \:  \:  \:  \:  \:  \: ...{cos \:(a + b)  = cos \: a \times cos \: b + sin \: a \times sin \: b} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{1}{ \sqrt{2}  }  \times  \frac{1}{2}  -  \:  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =   \frac{1}{2 \sqrt{2} }  -  \:  \frac{ \sqrt{3} }{2 \sqrt{2} }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  =  \frac{1 -  \sqrt{3} }{2 \sqrt{2} }

Similar questions