without using calculator find value of tan 75°
Answers
Answered by
6
tan75 = tan(30+45)
Also, tan(A+B) = (tanA + tanB)/(1 - tanAtanB)
So, tan(30+45) = (tan30+tan45)/(1+tan30tan45)
Now, tan30 = 1/✓3
And, tan45 = 1
Therefore, tan(30+45) = (1/✓3 + 1)/(1+ 1/✓3)
Therefore, tan75 = (1 + 1/✓3)²
So, tan75 = 1 + 1/3 + 2/✓3
So, tan75 = 4/3 + 2/✓3
So, tan75 = (4✓3 + 6)/3✓3
The value of✓3 is 1.73205
So, tan75 = 12.9282/5.19615 = 2.4880344
So, the approximate value of tan75 is 2.4880344
Answered by
0
tan(A+B)=tanA+tanB1−tanAtanB
tan(75)=tan(45+30)
=tan45+tan301−tan45tan30
=1+13√1−1×13√
=3–√+13–√−1
=(3–√+1)(3–√−1)(3–√+1)(3–√+1)
=2+3–√=3.7320508075
I hope it helps you
Similar questions