Math, asked by papafairy143, 4 days ago

Without using L Hospital Rule evaluate

 \lim \: x \to \:  \frac{\pi}{3}   \:  \:  \:  \:  \frac{2 \: sin(x -  \frac{\pi}{3}) }{1 - 2 \: cosx}

Answers

Answered by mathdude500
22

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to \dfrac{\pi}{3} }\rm  \:  \frac{2sin\bigg(x - \dfrac{\pi}{3}  \bigg) }{1 - 2cosx}  \\

If we substitute directly the value of x, we get

\rm \: =  \: \dfrac{2sin0}{1 - 2cos\dfrac{\pi}{3} }  \\

\rm \: =  \: \dfrac{0}{1 - 2 \times  \dfrac{1}{2}  }  \\

\rm \: =  \: \dfrac{0}{1 - 1}  \\

\rm \: =  \: \dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to \dfrac{\pi}{3} }\rm  \:  \frac{2sin\bigg(x - \dfrac{\pi}{3}  \bigg) }{1 - 2cosx}  \\

To evaluate this limit, we use method of Substitution.

So, Substitute

\rm \: x = \dfrac{\pi}{3}  + h, \:  \: as \: x \:  \to \: \dfrac{\pi}{3} , \:  \: so \: h \:  \to \: 0 \\

So, on substituting these values, we get

\rm \:=  \: 2 \displaystyle\lim_{h \to 0 }\rm  \:  \frac{sin\bigg(\dfrac{\pi}{3}  + h - \dfrac{\pi}{3}  \bigg) }{1 - 2cos\bigg(\dfrac{\pi}{3}  + h\bigg) }  \\

\rm \:=  \:  2\displaystyle\lim_{h \to 0 }\rm  \:  \frac{sin\bigg(h\bigg) }{1 - 2\bigg(cos\dfrac{\pi}{3}cosh - sin\dfrac{\pi}{3} sinh\bigg) }  \\

\rm \:=  \: 2 \displaystyle\lim_{h \to 0 }\rm  \:  \frac{sin\bigg(h\bigg) }{1 - 2\bigg( \dfrac{1}{2} cosh -  \dfrac{ \sqrt{3} }{2}  sinh\bigg) }  \\

\rm \:=  \:2  \displaystyle\lim_{h \to 0 }\rm  \:  \frac{sinh }{1 - cosh +  \sqrt{3} sinh}  \\

\rm \:=  \:  2\displaystyle\lim_{h \to 0 }\rm  \:  \frac{2sin \dfrac{h}{2}cos\dfrac{h}{2}  }{ {2sin}^{2}\dfrac{h}{2} +  2\sqrt{3}sin\dfrac{h}{2}cos\dfrac{h}{2}}  \\

\rm \:=  \:  2\displaystyle\lim_{h \to 0 }\rm  \:  \frac{2sin \dfrac{h}{2}cos\dfrac{h}{2}  }{ {2sin}\dfrac{h}{2}\bigg(sin\dfrac{h}{2} +  \sqrt{3} \: cos\dfrac{h}{2}\bigg)}  \\

\rm \:=  \: 2 \displaystyle\lim_{h \to 0 }\rm  \:  \frac{cos\dfrac{h}{2}  }{ sin\dfrac{h}{2} +  \sqrt{3} \: cos\dfrac{h}{2}}  \\

\rm \: =  \: \dfrac{2}{0 +  \sqrt{3} }  \\

\rm \: =  \: \dfrac{2}{ \sqrt{3} }  \\

Hence,

\rm\implies \:\boxed{\sf{  \: \: \rm \: \displaystyle\lim_{x \to \dfrac{\pi}{3} }\rm  \:  \frac{sin\bigg(x - \dfrac{\pi}{3}  \bigg) }{1 - 2cosx} =  \frac{2}{ \sqrt{3} }    \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\boxed{\rm{  \:cos(x + y) = cosxcosy - sinxsiny \: }} \\

\boxed{\rm{  \:cos2x = 1 -  {2sin}^{2}x \: }} \\

\boxed{\rm{  \:sin2x = 2 \: sinx \: cosx \: }} \\

\boxed{\sf{  \:cos\dfrac{\pi}{3}  =  \frac{1}{2}  \: }} \\

\boxed{\sf{  \:sin\dfrac{\pi}{3}  =  \frac{ \sqrt{3} }{2}  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  = 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  = 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  = 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  = loga \: }} \\

Similar questions