Math, asked by sravindran5483, 11 months ago

without using Pythagoras theorem, show that the points (1,-4)(2,-3) and (4,-7) form right angled triangle.​

Answers

Answered by amitkumar44481
61

Formula Use :

 \tt\dagger \: \: \: \: \:  D  =  \sqrt{ {(x_2 - x_1 )}^{2} +  {( y_2 - y_1 )}^{2}  }

Solution :

Let Point be,

  • A ( 1 , - 4 )
  • B ( 2 , - 3 )
  • C ( 4 , - 7 )

 \tt\mapsto AB =  \sqrt{ {(2 - 1)}^{2} +  {( - 4  + 3)}^{2}  }

 \tt\mapsto AB =  \sqrt{ {(1)}^{2} +  {(  - 1)}^{2}  }

 \tt\mapsto AB =  \sqrt{ 2}  \: units.

\rule{40}1

 \tt \mapsto BC =  \sqrt{ {(4 - 2)}^{2} +  {( - 7 + 3)}^{2}  }

 \tt \mapsto BC =  \sqrt{ {(2)}^{2} +  {(  - 4)}^{2}  }

 \tt \mapsto BC =  \sqrt{ 4 + 16  }

 \tt \mapsto BC =  \sqrt{20 }  \: units

\rule{40}1

\tt \mapsto AC = \sqrt{ {(4 - 1)}^{2} +  {(7 - 4)}^{2}  }

\tt \mapsto AC = \sqrt{9 + 9 }

\tt \mapsto AC = \sqrt{18  }  \: units.

\rule{100}1

Yes,

  • AB + AC = BC.
  • And given point ABC lies with 90° angle.

Verification :

\tt \mapsto H^{2} = P^{2} + B^{2}

\tt \mapsto BC^{2} = AB^{2} + AC^{2}

\tt \mapsto( \sqrt{20})^{2} =( \sqrt{ 2})^{2} + (\sqrt{18  } )^{2}

\tt \mapsto 20 = 2+18

\tt \mapsto 20= 20.

Similar questions