Math, asked by amitell, 11 months ago

Without using tables evaluate : -
5 cos o' - 2 sin 30° + V 3 cos 30'/
Tan 30° X tan 60° X cos 60°
+
3 sin 29 sec 61
... ​

Answers

Answered by veronica29
2

Answer:

talking about me?????

Answered by harendrachoubay
3

\dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}=\dfrac{11}{7}

Step-by-step explanation:

We have,

\dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}

To find, \dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}=?

\dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}

=\dfrac{5(1)-2(\dfrac{1}{2} )+\sqrt{3}(\dfrac{\sqrt{3}}{2} )}{\dfrac{1}{\sqrt{3}} \times \sqrt{3} \times (\dfrac{1}{2})+ 3\sin29 \sec (90-29)}

We know that,

The trigonometric identity,

\sin30= \dfrac{1}{2} , \cos30 =\dfrac{\sqrt{3}}{2} , \cos 0=1 , \cos60=\dfrac{1}{2} ,

\tan30=\dfrac{1}{\sqrt{3}} and \tan60=\sqrt{3}

=\dfrac{5-1+\dfrac{3}{2}}{\dfrac{1}{2}+ 3\sin29 \csc 29}

Using the trigonometric identity,

\sec (90-A)=\csc A

=\dfrac{4+\dfrac{3}{2}}{\dfrac{1}{2}+ 3\sin29\dfrac{1}{\sin29}}

=\dfrac{\dfrac{8+3}{2}}{\dfrac{1}{2}+ 3(1)}

=\dfrac{\dfrac{11}{2}}{\dfrac{1+6}{2}}

=\dfrac{\dfrac{11}{2}}{\dfrac{7}{2}}

=\dfrac{11}{7}

Hence, \dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}=\dfrac{11}{7}

Similar questions