Math, asked by Zerina313121, 3 months ago

Without using tables or long division find the value of
 \huge \frac{1}{3 -   \sqrt{2}  }
√2 = 1.414​

Answers

Answered by veeruveeru12084
0

Step-by-step explanation:

1/(3-√2)×3+√2/3+√2

3+√2/9-2

3+√2/7

Answered by mathdude500
4

Basic Concept Used :-

Concept of Rationalization :-

To multiply and divide the numerator and denominator by the opposite sign in denominator to remove the radicals from denominator.

Let's solve the problem now!!

Consider,

\rm :\longmapsto\:\dfrac{1}{3 -  \sqrt{2} }

On rationalizing the denominator, we get

 \:  \sf \:  \:  =  \:  \: \dfrac{1}{3 -  \sqrt{2} }  \times \dfrac{3 +  \sqrt{2} }{3 +  \sqrt{2} }

 \:  \sf \:  \:  =  \:  \: \dfrac{3 +  \sqrt{2} }{ {(3)}^{2}  -  {( \sqrt{2})}^{2} }

 \:  \:  \:  \:  \:  \:  \: \boxed{\red{\sf\: \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} }}

 \:  \sf \:  \:  =  \:  \: \dfrac{3 +  \sqrt{2} }{9 - 2}

 \:  \sf \:  \:  =  \:  \: \dfrac{3 +  \sqrt{2} }{7}

 \:  \sf \:  \:  =  \:  \: \dfrac{3 + 1.414}{7}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \because \:   \bf \: \sqrt{2}  = 1.414 \}

 \:  \sf \:  \:  =  \:  \: \dfrac{4.414}{7}

 \:  \sf \:  \:  =  \:  \: 0.6305 \: (approx.)

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions