Math, asked by nandhinisa02, 1 year ago

Without using trigonometric table, evaluate- cos^20°+ cos^70°/sec^50°- cot^40°×2 sec^60°

Answers

Answered by jotchahal
12
Hope this will help you
Attachments:
Answered by harendrachoubay
2

\dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60=8

Step-by-step explanation:

We have,

\dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60

To find, \dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60=?

\dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60

=\dfrac{\cos^2 20+\cos^2 (90-20)}{\sec^2 50-\cot^2 (90-50)}\times 2 sec^2 60

=\dfrac{\cos^2 20+\sin^2 20}{\sec^2 50-\tan^2 50}\times 2 sec^2 60

Using trigonometric identity,

\cos (90-A)=\sin A and

\cot (90-A)=\tan A

=\dfrac{1}{1}\times 2 sec^2 60

Using trigonometric identity,

\cos^2 A+\sin^2 A=1 and

\sec^2 A-\tan^2 A=1

= 2\times (2)^2

= 8

Hence, \dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60=8

Similar questions