Math, asked by oisheemajhi, 1 month ago

without using trigonometric table
please help me to do this sum​

Attachments:

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Solution:}}

       \text{The given expression is }\dfrac{cos70}{sin20} + \dfrac{cos59}{sin31} - 8sin^{2}30 = 0

       \text{Taking L.H.S}

\implies\dfrac{cos70}{sin20} + \dfrac{cos59}{sin31} - 8sin^{2}30

       \text{We know that, }sin\theta = cos(90-\theta)

\implies sin20 = cos(90-20) = cos70

\implies sin31 = cos(90-31) = cos59

       \text{Substituting in the expression}

\implies \dfrac{cos70}{cos70} + \dfrac{cos59}{cos59} - 8sin^{2}30

\implies 1 + 1 - 8sin^{2}30

\implies 2 - 8sin^{2}30

       \text{We know that, }sin30 = \dfrac12

\implies 2 - 8(\dfrac12)^{2}

\implies 2 - 8(\dfrac14)

\implies 2 - 2

\implies 0

\implies \text{L.H.S = R.H.S}

       \text{Hence proved}

Similar questions