without using trigonometric table prove that
Answers
Answer
(i) LHS cos81° - sin9°
= cos(90° -9°)- sin9°
= sin9° sin9°
= 0
= RHS
(ii) LHS = tan71° - cot19°
=tan(90° 19°) - cot19°
=cot19° cot19° =0
= RHS
(iii) LHS = cosec80° - sec10°
= cosec (90° -10°) - sec(10°)
= sec10° sec10⁰
= 0
= RHS
(iv) cosec^2 72° - tan^2 18° = 1 LHS = cosec^2 72° - tan^2 18° = cosec^2 72° - tan2 (90-72) = cosec^2 72° - cot^2 72° = 1
(v) cos^2 75° + cos^2 15°
= 1 LHS = cos^2 75° + cos^2 15°
= cos^2 75° + cos^2 (90-75)°
= cos^2 75° + sin^2 75°
= RHS
(vi) tan^2 66° cot^2 24°
= 0 LHS tan^2 66° - cot^2 24°
= tan^2 66°-cot^2 (90-66)°
= tan^2 66° - tan^2 66° = 0
= RHS
________________________________
(viii) Eighth for your own effort.
Step-by-step explanation:
(i) LHS cos81° - sin9°
= cos(90° -9°)- sin9°
= sin9° sin9°
= 0
= RHS
(ii) LHS = tan71° - cot19°
=tan(90° 19°) - cot19°
=cot19° cot19° =0
= RHS
(iii) LHS = cosec80° - sec10°
= cosec (90° -10°) - sec(10°)
= sec10° sec10⁰
= 0
= RHS
(iv) cosec^2 72° - tan^2 18° = 1 LHS = cosec^2 72° - tan^2 18° = cosec^2 72° - tan2 (90-72) = cosec^2 72° - cot^2 72° = 1
(v) cos^2 75° + cos^2 15°
= 1 LHS = cos^2 75° + cos^2 15°
= cos^2 75° + cos^2 (90-75)°
= cos^2 75° + sin^2 75°
= RHS
(vi) tan^2 66° cot^2 24°
= 0 LHS tan^2 66° - cot^2 24°
= tan^2 66°-cot^2 (90-66)°
= tan^2 66° - tan^2 66° = 0
=RHS.
with regards - Priyodipto Basak,
try to follow. m. e..