Math, asked by Nabhay1, 1 year ago

without using trigonometric tables, evaluate the following :-) [tan 20°/ cosec 70°]^2 + [ cot 20°/ sec 70°]^2 +2 tan15° tan45° tan75°

Answers

Answered by Richalav
6

Answer:

Step-by-step explanation:

Mark it as the brainliest.......

Attachments:
Answered by mysticd
7

Answer:

\left(\frac{tan20}{cosec70}\right)^{2}+\left(\frac{cot20}{sec70}\right)^{2}+2tan15tan45tan75=3

Step-by-step explanation:

Value \:of \: \left(\frac{tan20}{cosec70}\right)^{2}+\left(\frac{cot20}{sec70}\right)^{2}+2tan15tan45tan75

 = \left(\frac{tan20}{cosec(90-20)}\right)^{2}+\left(\frac{cot20}{sec(90-20)}\right)^{2}+2tan(90-75)tan75tan45

 = \left(\frac{tan20}{sec20}\right)^{2}+\left(\frac{cot20}{cosec20}\right)^{2}+2(cot75tan75)\times 1

 = \left(\frac{\frac{sin20}{cos20}}{\frac{1}{cos20}}\right)^{2}+\left(\frac{\frac{cos20}{sin20}}{\frac{1}{sin20}}\right)^{2}+2\times 1

=sin^{2}20 + cos^{2}20+2

= 1+2\\=3

Therefore,

\left(\frac{tan20}{cosec70}\right)^{2}+\left(\frac{cot20}{sec70}\right)^{2}+2tan15tan45tan75=3

Similar questions