Math, asked by anu27519, 1 year ago

Without using trigonometric tables find the value of 3sin^2(45°)+2 cos^2(60°).

Attachments:

Answers

Answered by mysticd
10

Answer:

 i)Value \: of \: 3sin^{2} 45\degree + 2 cos^{2} 60\degree

 = 3 \times \left( \frac{1}{\sqrt{2}}\right)^{2} + 2 \times \left( \frac{1}{2}\right)^{2}

 = 3 \times \frac{1}{2} + 2 \times \frac{1}{4}\\= \frac{3}{2} + \frac{1}{2}\\= \frac{ 4}{2} = 2

Therefore.,

 \red {Value \: of \: 3sin^{2} 45\degree + 2 cos^{2} 60\degree}\green {= 2}

 ii) Given \: log _{10}x = a \implies x = 10^{a}

  log _{10}y = b \implies y = 10^{b}

  log _{10}z = 3a - 2b \implies z  = 10^{3a-2b}

 \implies z = \frac{10^{3a}}{10^{2b}}\\= \frac{ (10^{a})^{3}}{(10^{b})^{2}}\\= \frac{x^{3}}{y^{2}}

Therefore.,

 \red {z} \green {= \frac{x^{3}}{y^{2}}}

•••♪

Similar questions