Math, asked by priyqnshusharma4429, 1 year ago

Without using trigonometric tables, find the value of (sin^2 10° + sin^2 80°)/(sec^2 20°-cot^2 70°)-3tan80°tan 50° tan 45° tan 10° tan 40°.

Answers

Answered by Pitymys
4

We know,

 \sin^2 10^o+\sin^2 80^o=\sin^2 10^o+\cos^2 10^o=1\\<br />\sec^2 20^o-\cot^2 70^o=\sec^2 20^o-\tan^2 20^o=1\\<br />\tan 80^o=\cot 10^o=\frac{1}{\tan 10^o} \\<br />\tan 50^o=\cot 40^o=\frac{1}{\tan 40^o}

Now the given expression is

 \frac{\sin^2 10^o+\sin^2 80^o}{\sec^2 20^o-\cot^2 70^o}-3\tan 80^o\tan 50^o\tan 45^o\tan 40^o\tan 10^o\\<br />=\frac{1}{1}-3\frac{1}{\tan 10^o}  \frac{1}{\tan 40^o}  \tan 45^o\tan 40^o\tan 10^o\\<br />=1-3 \tan 45^o\\<br />=1-3\\<br />=-2<br />

Similar questions