Math, asked by NavyaMishra, 1 year ago

Without using trigonometric tables, find the value of the following:
Cot theta.tan(90°-theta)-sec(90°-theta)cosec theta + under root 3.tan12°.tan 60°.tan 78°

Answers

Answered by kumarsuresh237p9qz6n
4
the answer is 2 hope it helps
Attachments:

NavyaMishra: Thanks a lot buddy
kumarsuresh237p9qz6n: welcome
Answered by SejalMaisheri
0

Answer:

 \cot( \theta)  \tan(90 \degree -\theta )  -  \sec( 90 \degree -\theta) \cosec( \theta)   + \sqrt{3}  \tan(12 \degree )  \tan(60 \degree) \tan(78\degree) = 2

Step-by-step explanation:

1) Step 1:

Simplying Using

tan(90-x) = cotx

sec(90-x) = cosecx

  = \cot( \theta)  \cot( \theta )  -  \cosec( \theta ) \cosec( \theta ) \:  +  \sqrt{3}  \tan(60 \degree)  \tan(12\degree)  \tan(78\degree)

2) Step 2:

Putting the value tan60° = √3

 { \cot^{2} ( \theta) } - { \cosec^{2} ( \theta) } +  \sqrt{3}  \sqrt{3} \tan(12\degree)  \tan(78\degree)

3) Step 3:

Using Identity

cosec²x - cot²x = 1

So cot²x - cosec²x = -1

= -1 +  3 \tan(12\degree)  \tan(78\degree)

4) Step 4:

Substituting tan(12) = tan(90-78)

= -1 +  3 \tan((90-78)\degree)  \tan(78\degree)

5) Step 5:

Again using Identity

tan(90-x) = cotx

and cotx tanx = 1

= -1 +  3 \cot(78\degree)  \tan(78\degree)

= -1 +  3(1)

= -1 +  3

= 2

So on simplifying the answer comes out to be 2

 \cot( \theta)  \tan(90 \degree -\theta )  -  \sec( 90 \degree -\theta) \cosec( \theta)   + \sqrt{3}  \tan(12 \degree )  \tan(60 \degree) \tan(78\degree) = 2

Similar questions