without using trigonometric tables prove that tan 5°tan 25°tan30°tan65°tan85°=1/✓3
Answers
Answered by
1
Answer:
Tan 5 = tan(90-85) = cot85
Tan 25 = Tan(90-65) = Cot65
Tan5 Tan25 Tan30 Tan 65 Tan85
⇒ Cot85 Cot 65 Tan30 Tan65 Tan85
⇒ Tan 30 (Since Cot85*Tan85 = 1 and Cot65*Tan65 = 1)
⇒ 1/_/3
Answered by
0
Step-by-step explanation:
tan5°.tan25°.tan30°.tan65°.tan85°=(1/√3)
tan5°.tan85°.tan25°.tan65°.tan30°=(1/√3)
tan5°.cot(90°-85°).tan25°.cot(90°-25°).tan30°=
(1/√3)
tan5°.cot5°.tan25°.cot25°.tan30°=(1/√3)
(tan5°/tan5°).(tan25°/tan25°).(1/√3)=(1/√3)
(1).(1).(1/√3)=(1/√3)
(1/√3)=(1/√3)
LHS = RHS
Hence proved
Similar questions