Math, asked by akshatamahale0405, 10 months ago

Without using trigonometrical tables, evaluate: 5 cos 0° - 2 sin 30° + √3 cos 30° divided by tan 30° x tan 60° x cos 60°

Answers

Answered by rahul123437
1

The value of given equation = 11

Given:

5 cos 0° - 2 sin 30° + √3 cos 30° divided by tan 30° x tan 60° x cos 60°

To find:

Without using trigonometrical tables, evaluate above equation.

Formula used:

tan\theta = \frac{sin\theta}{cos\theta}

sin\theta = cos (90-\theta)

Explanation:

First we take denominator.

     tan 30° x tan 60° x cos 60°

       = \frac{sin30}{cos30} x \frac{sin60}{cos60} x cos 60°

        = \frac{sin30}{cos30}  x sin(60)

         = \frac{sin30}{cos30} × cos (90-60)

         = sin30

The value of numerator = 5 cos 0° - 2 sin 30° + √3 cos 30°

 cos 0° = 1      sin 30° =\frac{1}{2}    cos 30°= \frac{\sqrt{3} }{2}

So, 5 cos 0° - 2 sin 30° + √3 cos 30°= 5×1 - 2× \frac{1}{2} +\sqrt{3}×\frac{\sqrt{3} }{2}

                                                          = 5.5

  \frac{5.5}{sin 30} = 5.5×2 = 11

So the value of given equation = 11

To learn more....

1)Why do we need to study trigonometry?

https://brainly.in/question/1219742

2)How did understand Trigonometry easily?

https://brainly.in/question/5179836

Similar questions