Math, asked by riyasaraswat6325, 16 days ago

without using trigonometry table evaluate the following​

Attachments:

Answers

Answered by MrPapaKaHelicopter
0

\colorbox{skyblue} {Ans.13}

 \frac{\sin15 ° \cos75° +  \cos15° \sin75°   }{ \tan5° \tan30 ° \tan35° \tan55°  \tan85 ° }

 =  \frac{ \sin15° \cos(90° - 15°) +  \cos15° \sin(90° - 15°)  }{ \tan5° \frac{1}{ \sqrt{3} }. \tan35 ° \tan(90° - 35°) . \tan(90° - 5)  }

  \left(\cos(90° -Ø )  =  \sinØ; \sin(90° -Ø )  =  \cosØ; \tan(90° -Ø )  =  \cotØ; \tanØ =  \frac{1}{ \cotØ}\right)

 =  \frac{ \sin15 °. \sin15° +   \cot15°. \cos15 °  }{ \frac{1}{ \cot5°} . \frac{1}{ \sqrt{3} } . \frac{1}{ \cot35° }. \cot35°. \cot5  °}

\left\{ { \sin}^{2Ø}   +  { \cos }^{2Ø}  = 1\right\}

  ⇒  \frac{ { \sin }^{2}15° +   { \cos}^{2} 15°}{ \frac{1}{ \sqrt{3} } }  = 1 \times  \frac{ \sqrt{3} }{1}  =  \sqrt{3}

\colorbox{skyblue} {Ans.14}

 \frac{3 \cos55° }{7 \sin35° }  -  \frac{4( \cos(70°. \csc20° ) }{7( \tan5° \tan25°. \tan45°. \tan65°. \tan85° ) }

 =  \frac{3 \sin(90° - 35°) }{7 \sin35 °}  -  \frac{4 \cos70°. \sec(90 ° - 20°)}{7( \tan5°. \tan25°.1 \times  \cot(90° - 65°). \cot(90° - 85°)  }

 =  \frac{3 \sin35 °}{7 \sin35° }  -  \frac{4. \frac{1}{ \sec70° } . \sec70° }{7 \times  \frac{1}{ \cot5 °} . \frac{1}{ \cot25° } \times 1 \times  \cot25 °. \cot5 °}

  ⇒ \frac{3}{7}  -  \frac{4 \times 1}{7 \times 1}  =  \frac{3}{7}  -  \frac{4}{7}  =  \frac{ - 1}{7}

 \\  \\  \\ \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ⌨}

Answered by virtuallyboss67
0

Answer:

please j.oin a.d and answer my questions

Similar questions