Math, asked by seemasanjaysingh2141, 7 months ago

without using trigonometry tables, evaluate

(tan20°/cosec70°)^2+(cot20°/sec70°)^2+2 tan15°tan37°tan53°tan60°tan75°

Answers

Answered by usharanisimhadri1987
1

Step-by-step explanation:

answer is 3

if u want process I will send

Answered by rocky200216
45

\bf{\gray{\underbrace{\blue{TO\:FIND:-}}}}

\red\bullet\:\bf{\Big(\dfrac{\tan{20^{\degree}}}{\cosec{70^{\degree}}}\Big)^2\:+\:\Big(\dfrac{\cot{20^{\degree}}}{\sec{70^{\degree}}}\Big)^2\:+\:2\:.\:\tan{15^{\degree}}\:.\:\tan{37^{\degree}}\:.\:\tan{53^{\degree}}\:.\:\tan{60^{\degree}}\:.\:\tan{75^{\degree}}\:}

___________________________

\bf{\gray{\underbrace{\blue{Trigonometric\:FORMULA:-}}}}

1.\:\bf\red{\cosec{(90^{\degree}\:-\:\theta)}\:=\:\sec{\theta}\:}

2.\:\bf\purple{\sec{(90^{\degree}\:-\:\theta)}\:=\:\cosec{\theta}\:}

3.\:\bf\orange{\tan{(90^{\degree}\:-\:\theta)}\:=\:\cot{\theta}\:}

4.\:\bf\green{\tan{\theta}\:.\:\cot{\theta}\:=\:1\:}

5.\:\bf\blue{\cosec{\theta}\:=\:{\dfrac{1}{\sin{\theta}}}\:}

6.\:\bf{\sec{\theta}\:=\:{\dfrac{1}{\cos{\theta}}}\:}

7.\:\bf\pink{\tan{\theta}\:=\:{\dfrac{\sin{\theta}}{\cos{\theta}}}\:}

8.\:\bf\gray{\cot{\theta}\:=\:{\dfrac{\cos{\theta}}{\sin{\theta}}}\:}

9.\:\bf\red{\sin^2{\theta}\:+\:\cos^2{\theta}\:=\:1\:}

___________________________

\bf{\gray{\underbrace{\blue{SOLUTION:-}}}}

\rm{:\implies\:\Big(\dfrac{\tan{20^{\degree}}}{\cosec{70^{\degree}}}\Big)^2\:+\:\Big(\dfrac{\cot{20^{\degree}}}{\sec{70^{\degree}}}\Big)^2\:+\:2\:.\:\tan{15^{\degree}}\:.\:\tan{37^{\degree}}\:.\:\tan{53^{\degree}}\:.\:\tan{60^{\degree}}\:.\:\tan{75^{\degree}}\:}

\rm{:\implies\:\Big\{\dfrac{\tan{20^{\degree}}}{\cosec{(90^{\degree}\:-\:20^{\degree})}}\Big\}^2\:+\:\Big\{\dfrac{\cot{20^{\degree}}}{\sec{(90^{\degree}\:-\:20^{\degree})}}\Big\}^2\:+\:2\:.\:\tan{15^{\degree}}\:.\:\tan{37^{\degree}}\:.\:\tan{(90^{\degree}\:-\:37^{\degree})}\:.\:\tan{60^{\degree}}\:.\:\tan{(90^{\degree}\:-\:15^{\degree})}\:}

\rm{:\implies\:\Big(\dfrac{\tan{20^{\degree}}}{\sec{20^{\degree}}}\Big)^2\:+\:\Big(\dfrac{\cot{20^{\degree}}}{\cosec{20^{\degree}}}\Big)^2\:+\:2\:.\:\cancel{\tan{15^{\degree}}}\:.\:\cancel{\tan{37^{\degree}}}\:.\:\cancel{\cot{37^{\degree}}}\:.\:\tan{60^{\degree}}\:.\:\cancel{\cot{15^{\degree}}}\:}

\rm{:\implies\:\Big\{\dfrac{\sin{20^{\degree}}/\cancel{\cos{20^{\degree}}}}{1/\cancel{\cos{20^{\degree}}}}\Big\}^2\:+\:\Big\{\dfrac{\cos{20^{\degree}}/\cancel{\sin{20^{\degree}}}}{1/\cancel{\sin{20^{\degree}}}}\Big\}^2\:+\:2\:.\:\tan{60^{\degree}}\:}

\rm{:\implies\:\sin^220^{\degree}\:+\:\cos^220^{\degree}\:+\:2\:.\:\tan{60^{\degree}}\:}

\rm{:\implies\:1\:+\:2\times{\sqrt{3}}\:}

\bf\green{:\implies\:1\:+\:2\sqrt{3}\:}

___________________________

\red\therefore\:\bf{Required\:Answer\:\longrightarrow\:\purple{1\:+\:2\sqrt{3}}\:}

Similar questions