Without using trigonometry tables, find the value of each of the expressions given below:
3cot31° tan15° cot27° tan75° cot63° cot59°
Answers
Answer:
we know that -: cot(90-a) = cot(a)
and tan(90-a) = tan(a)
and cot(a) = 1/ tan(a)
so tan(a) ×cot(a) = tan(a)×1/tan(a) =1
so 3cot31° tan15° cot27° tan75° cot63° cot59°=
3cot31 × tan15× cot27 ×tan (90-15)×cot(90-17)×cot(90-31)=3cot31×tan31×tan15× cot15×cot27×tan27= 3×1×1×1 =3
Step-by-step explanation:
Given :-
3 cot31° tan15° cot27° tan75° cot63° cot59°
To find :-
Without using trigonometry tables, find the value of the expression ?
Solution :-
Given expression is
3 cot 31° tan 15° cot 27° tan 75° cot 63° cot 59°
=> 3(cot 31°cot 59°)(tan 15° tan 75°)(cot 27° cot 63°)
We know that
Tan (90°-A) = Cot A
Cot (90°-A) = Tan A
Cot 59° = Cot (90°-31°) = Tan 31°
Tan 75° = Tan (90°-15°) = Cot 15°
Cot 63° = Cot (90°-27°) = Tan 27°
=> 3(cot 31°tan 31°)(tan 15° cot 15°)(cot 27° tan 27°)
We know that
Tan A × Cot A = 1
=> 3(1)(1)(1)
=> 3
Answer:-
The value of the given expression is 3
Used Formulae :-
→ Tan (90°-A) = Cot A
→ Cot (90°-A) = Tan A
→ Tan A = 1/Cot A
→ Cot A = 1/Tan A
→ Tan A × Cot A = 1