Math, asked by genius01, 4 days ago

Without using truth table prove that ( p V q) Ʌ (p V ~q) = p​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: (p\lor q)\land (p\lor \sim q) \\

We know,

\boxed{ \rm{ \:(p\lor q)\land (p\lor r) \:  =  \: p\lor (q\land r) \: }} \\

So, using this distributive property, we have

\rm \:  =  \: p\lor (q\land \sim q) \\

We know,

\boxed{ \rm{ \:p\land \sim p= c \: }} \\

So, using this complement law, we get

\rm \:  =  \: p\lor c \\

\rm \:  =  \: p \\

Hence,

\rm\implies \:\rm \: (p\lor q)\land (p\lor \sim q)  \:  =  \: p\\

\rule{190pt}{2pt}

Additional Information :-

1. Commutative Law :-

\boxed{ \rm{ \:p\lor q \:  =  \: q\lor p \: }} \\

\boxed{ \rm{ \:p\land q \:  =  \: q\land p \: }} \\

2. Associative Law

\boxed{ \rm{ \:p\lor (q\lor r) = (p\lor q)\lor r \: }} \\

\boxed{ \rm{ \:p\land  (q \land \: r) = (p\land  q)\land  r \: }} \\

3. Idempotent Law

\boxed{ \rm{ \:p\lor p = p \: }} \\

\boxed{ \rm{ \:p\land p = p \: }} \\

4. Distributive Law

\boxed{ \rm{ \:(p\lor q)\land (p\lor r) \:  =  \: p\lor (q\land r) \: }} \\

\boxed{ \rm{ \:(p\land q)\lor (p\land r) \:  =  \: p\land (q\lor r) \: }} \\

5. De Morgan's Law

\boxed{ \rm{ \:\sim (p\lor q) = \sim p\land \sim q \: }} \\

\boxed{ \rm{ \:\sim (p\land q) = \sim p\lor \sim q \: }} \\

6. Complement Law

\boxed{ \rm{ \:p\land \sim p= c \: }} \\

\boxed{ \rm{ \:p\lor \sim p= t \: }} \\

\boxed{ \rm{ \:\sim t = c \: }} \\

\boxed{ \rm{ \:\sim c = t \: }} \\

Similar questions