Without using truth table prove that {[(pvq)^~p] →q}=q
p
Answers
L.H.S. =p↔q
=(p→q)∧(q→p)
=(p∨∼q)∧(q∨∼p)
=((p∨∼q)∧q)∨((p∨∼q)∧∼p)
=((p∧q)∨(∼q∧q))∨((p∧∼p)∨(∼q∧∼p))
=(p∧q)∨(∼p∧∼q)
= R.H.S.
To prove,
(p∧q)∨(∼p∧∼q) = p↔q
Solution,
We can simply prove the mathematical equation as follows.
Taking the Right Hand Side,
⇒ p↔q
⇒ (p→q)∧(q→p) (According to the definition)
⇒ (p∨∼q)∧(q∨∼p) (By definition)
⇒((p∨∼q)∧q) ∨ ((p∨∼q)∧∼p) (By the distributive law)
⇒((p∧q) ∨ (∼q ∧q)) ∨((p∧∼p)∨(∼q∧∼p)) (Distributive law)
⇒(p∧q)∨(∼p∧∼q), (Using the complement laws)
which is equal to the left-hand side of the equation.
L.H.S = R.H.S
Thus, we proved that (p∧q)∨(∼p∧∼q) = p↔q.