Without using truth table show that
PQ = (PA2) V (NP ANq).
Answers
Answered by
1
Answer:
Answer
L.H.S. =p↔q
=(p→q)∧(q→p)
=(p∨∼q)∧(q∨∼p)
=((p∨∼q)∧q)∨((p∨∼q)∧∼p)
=((p∧q)∨(∼q∧q))∨((p∧∼p)∨(∼q∧∼p))
=(p∧q)∨(∼p∧∼q)
= R.H.S.
Hence proved.
Similar questions