Math, asked by anabanana1001, 5 months ago

withoutusing the tables find the value for:
sin60° cos 30° + cos 60° sin 30°​

Answers

Answered by Anonymous
21

\Huge\mathcal\blue{\underbrace{\overbrace{\mid{\orange{Answer}}\mid}}}

Given-

sin60 =   \frac{  \sqrt{3} }{2}

cos30 =   \frac{ \sqrt{3} }{2}

cos60 =  \frac{ {1} }{2}

 sin30 = \frac{ {1} }{2}

To Find-

the value of

sin60° cos 30° + cos 60° sin 30°

Solution-

sin60° cos 30° + cos 60° sin 30°

Now we substitute the value of all trigonometric ratios

So,

 =>  \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{2}  \times  \frac{1}{2}

 =  >  \frac{3}{2}  +  \frac{1}{2}

 =  >  \frac{4}{2}

 =  > 2

Answered by tanyadhyanishayrigir
1

Step-by-step explanation:

30°and 60°

are angles of one of the standard triangles

sin(30°)=1/2

cos(30°)=√3/2

sin(60°)=√3/2

cos(60°)=1/2

So

sin(60°)•cos(30°)+sin(30°)•cos(60°)

=(√3/2)(√3/2)+(1/2)(1/2)

=3/2+1/2=4/2=2

Similar questions