Math, asked by katiejohnson130, 11 months ago

Work out (7x10^5)divide(2x10^2) give your answer in standard form

Answers

Answered by jitumahi435
0

We need to recall the following definition of a standard form.

A standard form of a number is a way of writing the number as a multiple of exponent of 10.

Given:

\frac{7*10^5}{2*10^2}

Use the property:  \frac{a^m}{a^n} =a^{(m-n)}

\frac{7*10^5}{2*10^2}=\frac{7*10^{5-2}}{2}

\frac{7*10^5}{2*10^2}=\frac{7*10^{3}}{2}

\frac{7*10^5}{2*10^2}=3.5*10^3

Use the property:  {a^m}*{a^n} =a^{(m+n)}

\frac{7*10^5}{2*10^2}=35*10^3*10^{-1}

\frac{7*10^5}{2*10^2}=35*10^2

Thus, the standard form of the number \frac{7*10^5}{2*10^2} is 35*10^{2}.

Answered by swethassynergy
5

The value of the division of  \frac{7\times 10^{5} }{2\times 10^{2} }   is 3.5\times 10^{3}.

Step-by-step explanation:

Given:

\frac{7\times 10^{5} }{2\times 10^{2} }    

To Find:

The value of the division of   \frac{7\times 10^{5} }{2\times 10^{2} }.

Solution

As given-  \frac{7\times 10^{5} }{2\times 10^{2} }.

\frac{7\times 10^{5} }{2\times 10^{2} } = 3.5\times 10^{5-2}

         = 3.5\times 10^{3}

 Thus, the value of the division of  \frac{7\times 10^{5} }{2\times 10^{2} }   is 3.5\times 10^{3}.

Similar questions