Physics, asked by sk5941185, 1 year ago

working of vandegraph genrator

Answers

Answered by annie200355
1

Answer:

Hey mate!!!!

A Van de Graaff generator is an electrostatic generator which uses a moving belt to accumulate electric charge on a hollow metal globe on the top of an insulated column, creating very high electric potentials. It produces very high voltage direct current (DC) electricity at low current levels.

Hope you understand!!!

Answered by simran1820
2

hey mate welcome to my ans .....

VANDEGRAFF GENERATOR ...

Van de Graaff generator

Electrostatic particle accelerator driven by the triboelectricity effect

A Van de Graaff generator is an electrostatic generator which uses a moving belt to accumulate electric charge on a hollow metal globe on the top of an insulated column, creating very high electric potentials. It produces very high voltage direct current (DC) electricity at low current levels. It was invented by American physicist Robert J. Van de Graaff in 1929. The potential difference achieved by modern Van de Graaff generators can be as much as 5 megavolts. A tabletop version can produce on the order of 100,000 volts and can store enough energy to produce a visible spark.

The Van de Graaff generator was developed as a particle accelerator for physics research; its high potential is used to accelerate subatomic particles to great speeds in an evacuated tube. It was the most powerful type of accelerator of the 1930s until the cyclotron was developed. Van de Graaff generators are still used as accelerators to generate energetic particle and X-ray beams for nuclear research and nuclear medicine.

Particle-beam Van de Graaff accelerators are often used in a "tandem" configuration: first, negatively charged ions are injected at one end towards the high potential terminal, where they are accelerated by attractive force towards the terminal. When the particles reach the terminal, they are stripped of some electrons to make them positively charged and are subsequently accelerated by repulsive forces away from the terminal. This configuration results in two accelerations for the cost of one Van de Graaff generator, and has the added advantage of leaving the complicated ion source instrumentation accessible near ground potential.

The voltage produced by an open-air Van de Graaff machine is limited by arcing and corona discharge to about 5 megavolts. Most modern industrial machines are enclosed in a pressurized tank of insulating gas; these can achieve potentials of as much as about 25 megavolts.

HOPE ITS CLR tO yOU

Similar questions