Math, asked by firdosefathima127, 10 months ago

write 2log3+3log5-log2 as single logarithm​

Answers

Answered by jetaprolukousthub
5

Answer: 3log^2*5log^3/log2

Step-by-step explanation:

Answered by SANDHIVA1974
2

Step-by-step explanation:

\log 10+2\log 3-\log 2=\log 45

Step-by-step explanation:

Given :Expression \log 10+2\log 3-\log 2

To find : Express the expression in one logarithm ?

Solution :

Using logarithmic properties,

a\log x=\log x^a

\log ab=\log a+\log b

\log \frac{a}{b}=\log a-\log b

\log 10+2\log 3-\log 2=\log 10+\log 3^2-\log 2

\log 10+2\log 3-\log 2=\log 10+\log 9-\log 2

\log 10+2\log 3-\log 2=\log (\frac{10\times 9}{2})

\log 10+2\log 3-\log 2=\log 45

Therefore, \log 10+2\log 3-\log 2=\log 45

2(log a+log a2 +log a3+ log a⁴+...+log an)

Similar questions