Math, asked by harshithareddyg242, 3 days ago

Write 3 log5+4 log6-5 log3 as a single logarithum.​

Answers

Answered by anindyaadhikari13
3

\textsf{\large{\underline{Solution}:}}

We have to write the given expression as a single logarithm.

We know that:

 \rm: \longmapsto \log \bigg( \dfrac{x}{y} \bigg) = \log(x)  -  \log(y)

 \rm: \longmapsto \log(xy) = \log(x)  +  \log(y)

 \rm: \longmapsto n\log(x) = \log( {x}^{n})

Therefore, we have:

 \rm = 3 \log(5) + 4 \log(6) - 5 \log(3)

 \rm = \log( {5}^{3} ) +\log( {6}^{4} ) -\log( {3}^{5} )

 \rm = \log \bigg( \dfrac{ {5}^{3} \times  {6}^{4}  }{ {3}^{5} }  \bigg)

 \rm = \log \bigg( \dfrac{ {5}^{3} \times  {3}^{4} \times  {2}^{4}   }{ {3}^{5} }  \bigg)

 \rm = \log \bigg( \dfrac{ {5}^{3} \times  {2}^{4}   }{ 3 }  \bigg)

 \rm = \log \bigg( \dfrac{ {5}^{3} \times  {2}^{3}  \times 2  }{ 3 }  \bigg)

 \rm = \log \bigg( \dfrac{{10}^{3}  \times 2  }{ 3 }  \bigg)

 \rm = \log \bigg( \dfrac{2000}{ 3 }  \bigg)

★ Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Similar questions