Math, asked by mayahxoo, 4 months ago

write 3n/9n-1 as a power of 3
URGENT!!! HELP!

Answers

Answered by pulakmath007
5

\displaystyle \sf{   \frac{ {3}^{n} }{ {9}^{n - 1} } } =  {3}^{2 - n}

Given :

\displaystyle \sf{   \frac{ {3}^{n} }{ {9}^{n - 1} } }

To find :

To express as a power of 3

Formula :

 \displaystyle \sf{1. \:  \:  \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

 \displaystyle \sf{2. \:  \:  \:  { ({a}^{m} )}^{n} =  {a}^{mn}  }

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{   \frac{ {3}^{n} }{ {9}^{n - 1} } }

Step 2 of 2 :

Express as power of 3

\displaystyle \sf{   \frac{ {3}^{n} }{ {9}^{n - 1} } }

\displaystyle \sf{    = \frac{ {3}^{n} }{ {( {3}^{2} )}^{n - 1} } }

\displaystyle \sf{    = \frac{ {3}^{n} }{ {3}^{(2 \times (n - 1))} } }\:  \:  \: \bigg[ \:  \because \:{ ({a}^{m} )}^{n} =  {a}^{mn}  \bigg]

\displaystyle \sf{    = \frac{ {3}^{n} }{ {3}^{2n - 2} } }

\displaystyle \sf{    =  {3}^{n - 2n + 2}  }\:  \:  \: \bigg[ \:  \because \:\frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}  \bigg]

\displaystyle \sf{ =  {3}^{2 - n}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. choose the correct alternative : 100¹⁰⁰ is equal to (a) 2¹⁰⁰ × 50¹⁰⁰ (b) 2¹⁰⁰ + 50¹⁰⁰ (c) 2² × 50⁵⁰ (d) 2² + 50⁵⁰

https://brainly.in/question/47883149

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

Answered by jameslitseJames
0

Answer:

Step-by-step explanation:

Similar questions