Math, asked by Anonymous, 1 month ago

Write 4 multiples of

 \huge{ \frac{ {2}^{ - 598} }{ {2}^{ 598} }  \times  \frac{ {2}^{ {(333)}^{9} } }{ {999}^{20}  \times {0}^{1} } }


Solve & Answer .​

Answers

Answered by IIMissTwinkleStarII
1

Answer:

(a + b)2 = a2 + 2ab + b2

(a - b)2 = a2 - 2ab + b2

Calculation:

Let us consider a = 598, and b = 479

So, the numerator = a2 + 2ab + b2 - (a2 - 2ab + b2) = 4ab

and the denominator = a × b = ab

∴ ? = 4ab/ab = 4

Answered by NITESH761
1

Answer:

2^4193

Step-by-step explanation:

 \huge{ \frac{ {2}^{ - 598} }{ {2}^{ 598} } \times \frac{ {2}^{ {(333)}^{9} } }{ {999}^{20} \times {0}^{1} } }

2^-598-598 × 2^(333)9

2^1196×2^2997

2^1196+2997

2^4193

Similar questions