Math, asked by prasenjeet43, 4 months ago

write 5rational numbers between 1\3 and 3\4​

Answers

Answered by arkhash0309
0

Answer:

2/3 , 3/5 , 5/7 , 1/2 , 5/9

Step-by-step explanation:

A rational number is any number which can be written as a fraction. So u can choose any number which can be written as a fraction....

Hope it heps u.

Answered by CuteAnswerer
3

S O L U T I O N :-

Let the numbers are

  • \bf{x_1,x_2,x _3,x_4,x_5}

{:}\longrightarrow\sf x_1=\dfrac {1}{2}\bigg ({\dfrac {1}{3}}+{\dfrac {3}{4}} \bigg) \\ \\

 {:}\longrightarrow\sf x_1=\dfrac {1}{2}\bigg({\dfrac {4+9}{12}}\bigg) \\ \\

 {:}\longrightarrow\sf x_1 =\dfrac {1}{2}\times {\dfrac {13}{12}}  \\ \\

{:}\longrightarrow  \underline{\boxed{ \purple{\bf x_1 =\dfrac{13}{24}}}}

{:}\longrightarrow\sf x_2=\dfrac{1}{2}\bigg({\dfrac {1}{3}}+{\dfrac {13}{24}}\bigg) \\ \\

{:}\longrightarrow\sf x_2 =\dfrac {1}{2}\bigg(\dfrac {8+13}{24}\bigg)  \\ \\

{:}\longrightarrow\sf x_2=\dfrac {1}{2}\times \dfrac {\cancel{21}} {\cancel{24}} \\ \\

{:}\longrightarrow{ \underline{ \boxed{ \pink{\bf x_2 =\dfrac {7}{16}}}}}

{:}\longrightarrow\sf x_3=\dfrac {1}{2}\bigg(\dfrac {1}{3}+{\dfrac {7}{16}}\bigg)\\ \\

{:}\longrightarrow\sf x_3 =\dfrac {1}{2}\bigg(\dfrac {16+21}{48}\bigg) \\ \\

{:}\longrightarrow\sf x_3 =\dfrac {1}{2}\times {\dfrac{37}{48}} \\ \\

{:}\longrightarrow{ \underline{ \boxed{ \blue{\bf x_3={\dfrac {37}{96}}}}}}

{:}\longrightarrow\sf x_4=\dfrac {1}{2}\bigg({\dfrac {13}{24}}+{\dfrac {3}{4}}\bigg)  \\ \\

{:}\longrightarrow\sf x_4=\dfrac {1}{2}\bigg(\dfrac {13+18}{24}\bigg) \\  \\

{:}\longrightarrow\sf x_4 =\dfrac {1}{2}\times \dfrac {31}{24} \\ \\

{:}\longrightarrow  \underline{\boxed{ \green{\bf x_4 =\dfrac {31}{48}}}}

{:}\longrightarrow\sf x_5=\dfrac {1}{2}\bigg({\dfrac {31}{48}}+{\dfrac {3}{4}}\bigg)  \\ \\

{:}\longrightarrow\sf x_5=\dfrac {1}{2}\bigg(\dfrac {31+36}{48}\bigg) \\  \\

{:}\longrightarrow\sf x_5=\dfrac {1}{2}\times \dfrac {67}{48} \\ \\

{:}\longrightarrow  \underline{\boxed{ \red{\bf x_5 =\dfrac{67}{96}}}}

Similar questions