Math, asked by RenuHansda, 9 months ago


Write 6i^5+ 7i^4 + 3i^3 + 5i^2-4 in the form of a +ib and find its square root.​

Answers

Answered by Anonymous
4

Answer:-

\sf{Hence, \ the \ square \ root \ of }

\sf{6i^{5}+7i^{4}+3i^{3}+5i^{2}-4 \ is }

\sf{\sqrt3+\frac{\sqrt3}{2}i \ or \ -3-\frac{\sqrt3}{2}i}

Given:

\sf{\implies{6i^{5}+7i^{4}+3i^{3}+5i^{2}-4}}

Solution:

\sf{\implies{6i^{5}+7i^{4}+3i^{3}+5i^{2}-4}}

\sf{\implies{6(i^{4}.i)+7i^{4}+3i^{3}+5i^{2}-4}}

\sf\blue{\because{i^{2}=-1, \ i^{3}=-i \ and \ i^{4}=1}}

\sf{\implies{6i+7-3i-5-4}}

\sf{\implies{-2+3i}}

\sf{Let \ \sqrt{-2+3i}=a+bi, \ where \ a \ and \ b \ \in \ R}

\sf{Squaring \ both \ sides, \ we \ get}

\sf{-2+3i=(a+bi)^{2}}

\sf{\therefore{-2+3i=a^{2}+b^{2}i^{2}+2abi}}

\sf{\therefore{-2+3i=(a^{2}-b^{2})+2abi...[\because{i^{2}=-1}]}}

\sf{Equating \ real \ and \ imaginary \ parts,}

\sf{we \ get}

\sf{a^{2}-b^{2}=-2 \ and \ 2ab=3}

\sf{\therefore{a^{2}-b^{2}=-2 \ and \ b=\frac{3}{2a}}}

\sf{\therefore{a^{2}-(\frac{3}{2a})^{2}=-2}}

\sf{\therefore{a^{2}-\frac{9}{4a^{2}}=-2}}

\sf{\therefore{\frac{4a^{4}-9}{4a^{2}}=-2}}

\sf{\therefore{4a^{4}-9=8a^{2}}}

\sf{\therefore{4a^{2}-8a^{2}-9=0}}

\sf{\therefore{4a^{2}-12a^{2}+3a^{2}-9=0}}

\sf{\therefore{4a^{2}(a^{2}-3)+3(a^{2}-3)=0}}

\sf{\therefore{(a^{2}-3)(4a^{2}+3)=0}}

\sf{\therefore{a^{2}=3 \ or \ a^{2}=\frac{-3}{4}}}

\sf{But, \ a \ \in \ R}

\sf{\therefore{a^{2}\ \neq \ \frac{-3}{4}}}

\sf{\therefore{a^{2}=3}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{a=\pm\sqrt3}

\sf{When \ a=\sqrt3, \ b=\frac{3}{(2)(\sqrt3)}}

\sf{\therefore{b=\frac{\sqrt3}{2}}}

\sf{When \ a=-\sqrt3, \ b=\frac{3}{(2)(-\sqrt3)}}

\sf{\therefore{b=\frac{-\sqrt3}{2}}}

\sf{\therefore{a+bi=\pm(\sqrt3+\frac{\sqrt3}{2}i)}}

\sf{\therefore{\sqrt{-2+3i}=\pm(\sqrt3+\frac{\sqrt3}{2}i)}}

\sf\purple{\tt{\therefore{Hence, \ the \ square \ root \ of }}}

\sf\purple{\tt{6i^{5}+7i^{4}+3i^{3}+5i^{2}-4 \ is }}

\sf\purple{\tt{\sqrt3+\frac{\sqrt3}{2}i \ or \ -3-\frac{\sqrt3}{2}i}}

Similar questions