Math, asked by shaiksimran, 11 months ago

write a condition fot nature of roots of a quadratic equation ax^ 2+ bx + c = 0​

Answers

Answered by RohanBabhale
3

If b^2 -4ac =0

then the roots are equal and real.

If b^2 -4ac <0

then the roots are not real .

If b^2 -4ac >0

then the roots are real and unequal

mark it as brainliest and follow me

Answered by amitkumar44481
7

AnsWer :

# How to Find Nature of Roots.

\begin{tabular}{ | c | c | }  \cline{1-2}When &amp; Then  \\ \cline{1-2} D more than 0 &amp; The roots real \\ \cline{1-2} D = 0 &amp; both roots are equal and Real roots.  \\ \cline{1-2}  D less than 0 &amp; The roots are unreal and imaginary \\ \cline{1-2} \end{tabular}

Point Note,

  • Discriminant ( D ) It show nature of roots.
  • D = b² - 4ac.

Let Find both Roots by Quadratic Formula.

We have,

General Equation,

  \tt \dagger \:  \:  \:  \:  \:  a{x}^{2}  + bx + c = 0.

And, dividing coefficient of x² both sides.

 \tt\longmapsto  \dfrac{a {x}^{2} }{ a }  +  \dfrac{bx}{ a}  +    \dfrac{c}{a}  = 0.

 \tt\longmapsto   {x}^{2}  +  \dfrac{bx}{ a}  +    \dfrac{c}{a}  = 0.

Now, By completing the Square method

 \tt\longmapsto   {x}^{2}   +  \dfrac{bx}{ a} +   {( \dfrac{b}{2a}) }^{2} - {( \dfrac{b}{2a}) }^{2} +    \dfrac{c}{a}  = 0.

 \tt \longmapsto  {(x + \dfrac{b}{2a} )}^{2}  - {(\dfrac{b}{2a})}^{2}  +  \dfrac{c}{a}  = 0.

 \tt\longmapsto  {(x +  \dfrac{b}{2a} )}^{2}   = \dfrac{ {b}^{2} }{4 {a}^{2} }  - \dfrac{c}{a}

 \tt\longmapsto  {(x +  \dfrac{b}{2a} )}   = \pm  \sqrt{ \frac{ {b}^{2}  - 4ac}{4 {a}^{2} } }

 \tt\longmapsto  {(x +  \dfrac{b}{2a} )}   = \pm \frac{\sqrt{ {b}^{2}  - 4ac} }{2a}

 \tt\longmapsto  x  = \dfrac{ - b}{2a}   \pm\frac{ \sqrt{ {b}^{2}  - 4ac} }{2a}

 \tt\longmapsto  x  =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

\rule{90}1

 \tt\longmapsto  \alpha  =  \dfrac{ - b + \sqrt{ {b}^{2} - 4ac } }{2a}

 \tt\longmapsto  \beta  =  \dfrac{ -b-\sqrt{ {b}^{2} - 4ac } }{2a}

Similar questions