Math, asked by Abhishekpatil9916, 10 months ago

Write (a+ib/a-ib)^2-(a-ib/a+ib)^2 in the form x +iy please reply me this

Answers

Answered by MaheswariS
29

\textbf{Given:}

(\dfrac{a+i\,b}{a-i\,b})^2-(\dfrac{a-i\,b}{a+i\,b})^2

\textbf{To find:}

\text{x+iy form of $(\dfrac{a+i\,b}{a-i\,b})^2-(\dfrac{a-i\,b}{a+i\,b})^2$}

\textbf{Solution:}

\text{Consider}

(\dfrac{a+i\,b}{a-i\,b})^2

=\dfrac{(a+i\,b)^2}{(a-i\,b)^2}

=\dfrac{a^2-b^2+i\,2ab}{a^2-b^2-i\,2ab}

(\dfrac{a-i\,b}{a+i\,b})^2

=\dfrac{(a-i\,b)^2}{(a+i\,b)^2}

=\dfrac{a^2-b^2-i\,2ab}{a^2-b^2+i\,2ab}

\text{Now,}

(\dfrac{a+i\,b}{a-i\,b})^2-(\dfrac{a-i\,b}{a+i\,b})^2

=(\dfrac{a^2-b^2+i\,2ab}{a^2-b^2-i\,2ab})-(\dfrac{a^2-b^2-i\,2ab}{a^2-b^2+i\,2ab})

=\dfrac{(a^2-b^2+i\,2ab)^2-(a^2-b^2-i\,2ab)^2}{(a^2-b^2-i\,2ab)(a^2-b^2+i\,2ab)}

=\dfrac{((a^2-b^2)^2-4a^2b^2+i\,4ab(a^2-b^2))-((a^2-b^2)^2-4a^2b^2-i\,4ab(a^2-b^2))}{(a^2-b^2)^2+\,4a^2b^2}

=\dfrac{(a^2-b^2)^2-4a^2b^2+i\,4ab(a^2-b^2)-(a^2-b^2)^2+4a^2b^2+i\,4ab(a^2-b^2)}{(a^2-b^2)^2+\,4a^2b^2}

=\dfrac{i\,8ab(a^2-b^2)}{(a^2-b^2)^2+\,4a^2b^2}

=0+i\,\dfrac{8ab(a^2-b^2)}{(a^2-b^2)^2+\,4a^2b^2}

\therefore\bf\,(\dfrac{a+i\,b}{a-i\,b})^2-(\dfrac{a-i\,b}{a+i\,b})^2=0+i\,\dfrac{8ab(a^2-b^2)}{(a^2-b^2)^2+\,4a^2b^2}

Similar questions