Math, asked by shield13653, 5 months ago

Write A in terms of a and I we
wing
Cayley - Hamilton theorem if A = (1 0 0 5 ) 2×2 matrix ​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{A=\left(\begin{array}{cc}1&0\\0&5\end{array}\right)}

\underline{\textbf{To find:}}

\mathsf{A^{-1}\;in\;terms\;of\;A\;and\;I}

\underline{\textbf{Solution:}}

\underline{\textbf{Cayley-Hamilton theorem:}}

\boxed{\textbf{Every square matrix satisfies its characteristic equation}}

\textsf{Charecteristic polynomial of A is}

\mathsf{|A-m\,I|=0}

\mathsf{\left|\left(\begin{array}{cc}1&0\\0&5\end{array}\right)-m\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\right|=0}

\mathsf{\left|\left(\begin{array}{cc}1&0\\0&5\end{array}\right)-\left(\begin{array}{cc}m&0\\0&m\end{array}\right)\right|=0}

\mathsf{\left|\begin{array}{cc}1-m&0\\0&5-m\end{array}\right|=0}

\mathsf{(1-m)(5-m)=0}

\mathsf{(m-1)(m-5)=0}

\boxed{\mathsf{m^2-6\,m+5=0}}

\textsf{By Cayley-Hamilton theroem, we have}

\mathsf{A^2-6\,A+5\,I=0}

\mathsf{Multiply\;bothsides\;by\;A^{-1}}

\mathsf{A{-1}(A^2-6\,A+5\,I)=A^{-1}0}

\mathsf{A^{-1}A^2-6\,A^{-1}A+5\,A^{-1}I}=0}

\mathsf{A-6\,I+5\,A^{-1}}=0}

\mathsf{5\,A^{-1}}=6\,I-A}

\boxed{\mathsf{A^{-1}}=\dfrac{1}{5}(6\,I-A)}}

\underline{\textbf{Find more:}}

Verify Cayley-Hamilton theorem for the matrix

1 0 2

A=. 0 2 1

2 0 3

https://brainly.in/question/42303081

Similar questions